Asymmetry and Ambiguity in Newsvendor Models

A basic assumption of the classical newsvendor model is that the probability distribution of the random demand is known. But in most realistic settings, only partial distribution information is available or reliably estimated. The distributionally robust newsvendor model is often used in this case where the worst-case expected profit is maximized over the set of distributions satisfying the known information, which is usually the mean and covariance of demands. However, covariance does not capture information on asymmetry of the demand distribution. In this paper, we introduce a measure of distribution asymmetry using second-order partitioned statistics. Semivariance is a special case with a single partition of the univariate demand. With mean, variance, and semivariance information, we show that a three-point distribution achieves the worst-case expected profit and derive a closed-form expression for the distributionally robust order quantity. For multivariate demand, the distributionally robust problem ...

[1]  Chung-Piaw Teo,et al.  On reduced semidefinite programs for second order moment bounds with applications , 2017, Math. Program..

[2]  Robert Fildes,et al.  Forecasting Systems for Production and Inventory Control , 1992 .

[3]  G. Gallego,et al.  The Distribution Free Newsboy Problem: Review and Extensions , 1993 .

[4]  A. Stuart,et al.  Portfolio Selection: Efficient Diversification of Investments , 1959 .

[5]  R. Rockafellar,et al.  Optimization of conditional value-at risk , 2000 .

[6]  M. Frittelli,et al.  Putting order in risk measures , 2002 .

[7]  S. Satchell,et al.  Asymmetry and downside risk in foreign exchange markets , 2000 .

[8]  M. Teboulle,et al.  AN OLD‐NEW CONCEPT OF CONVEX RISK MEASURES: THE OPTIMIZED CERTAINTY EQUIVALENT , 2007 .

[9]  Roberto Verganti,et al.  A simulation framework for forecasting uncertain lumpy demand , 1999 .

[10]  P. Fishburn Mean-Risk Analysis with Risk Associated with Below-Target Returns , 1977 .

[11]  Melvyn Sim,et al.  TRACTABLE ROBUST EXPECTED UTILITY AND RISK MODELS FOR PORTFOLIO OPTIMIZATION , 2009 .

[12]  R. Cont Empirical properties of asset returns: stylized facts and statistical issues , 2001 .

[13]  Peter W. Glynn,et al.  Likelihood robust optimization for data-driven problems , 2013, Computational Management Science.

[14]  Ann De Schepper,et al.  Distribution-free option pricing , 2007 .

[15]  Leonard J. Savage,et al.  The Theory of Statistical Decision , 1951 .

[16]  Li Chen,et al.  Tight Bounds for Some Risk Measures, with Applications to Robust Portfolio Selection , 2011, Oper. Res..

[17]  Mihalis G. Markakis,et al.  Inventory Pooling Under Heavy-Tailed Demand , 2016, Manag. Sci..

[18]  Stephen E. Satchell,et al.  Statistical properties of the sample semi-variance , 2002 .

[19]  F. Sortino,et al.  On the Use and Misuse of Downside Risk , 1996 .

[20]  E. Fama The Behavior of Stock-Market Prices , 1965 .

[21]  A. Atsawarungruangkit,et al.  Generating Correlation Matrices Based on the Boundaries of Their Coefficients , 2012, PloS one.

[22]  Xuan Vinh Doan,et al.  Models for Minimax Stochastic Linear Optimization Problems with Risk Aversion , 2010, Math. Oper. Res..

[23]  Aharon Ben-Tal,et al.  Stochastic Programs with Incomplete Information , 1976, Oper. Res..

[24]  Kurt Jörnsten,et al.  A Maximum Entropy Approach to the Newsvendor Problem with Partial Information , 2011, Eur. J. Oper. Res..

[25]  Georgia Perakis,et al.  Regret in the Newsvendor Model with Partial Information , 2008, Oper. Res..

[26]  Min-Chiang Wang,et al.  Expected Value of Distribution Information for the Newsvendor Problem , 2006, Oper. Res..

[27]  Larry G. Epstein A definition of uncertainty aversion , 1999 .

[28]  Roberto Verganti,et al.  Measuring the impact of asymmetric demand distributions on inventories , 1999 .

[29]  Stephen P. Boyd,et al.  Applications of second-order cone programming , 1998 .

[30]  Georgia Perakis,et al.  The Data-Driven Newsvendor Problem: New Bounds and Insights , 2015, Oper. Res..

[31]  R. Engle Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation , 1982 .

[32]  Amir Ardestani-Jaafari,et al.  Robust Optimization of Sums of Piecewise Linear Functions with Application to Inventory Problems , 2015, Oper. Res..

[33]  Daniel Kuhn,et al.  Distributionally robust multi-item newsvendor problems with multimodal demand distributions , 2014, Mathematical Programming.

[34]  Marc Goovaerts,et al.  Upper bounds on stop-loss premiums in case of known moments up to the fourth order☆ , 1986 .

[35]  J. Chevalier,et al.  Measuring Prices and Price Competition Online: Amazon.com and BarnesandNoble.com , 2003 .

[36]  Daniel Kuhn,et al.  Distributionally Robust Convex Optimization , 2014, Oper. Res..

[37]  T. Bollerslev,et al.  Generalized autoregressive conditional heteroskedasticity , 1986 .

[38]  Yinyu Ye,et al.  Distributionally Robust Optimization Under Moment Uncertainty with Application to Data-Driven Problems , 2010, Oper. Res..

[39]  John Knight,et al.  Statistical modelling of asymmetric risk in asset returns , 1995 .

[40]  Ioana Popescu,et al.  On the Relation Between Option and Stock Prices: A Convex Optimization Approach , 2002, Oper. Res..

[41]  Jiawei Zhang,et al.  Newsvendor optimization with limited distribution information , 2013, Optim. Methods Softw..

[42]  Marc Salomon,et al.  How Larger Demand Variability May Lead to Lower Costs in the Newsvendor Problem , 1998, Oper. Res..

[43]  J. D. Croston Forecasting and Stock Control for Intermittent Demands , 1972 .

[44]  Alexander Schied,et al.  Convex measures of risk and trading constraints , 2002, Finance Stochastics.

[45]  Donglei Du,et al.  Technical Note - A Risk- and Ambiguity-Averse Extension of the Max-Min Newsvendor Order Formula , 2014, Oper. Res..

[46]  Herbert E. Scarf,et al.  A Min-Max Solution of an Inventory Problem , 1957 .

[47]  D. Ellsberg Decision, probability, and utility: Risk, ambiguity, and the Savage axioms , 1961 .

[48]  A. Lo Semi-parametric upper bounds for option prices and expected payoffs , 1987 .

[49]  Tamás Terlaky,et al.  A Survey of the S-Lemma , 2007, SIAM Rev..

[50]  Philippe Artzner,et al.  Coherent Measures of Risk , 1999 .

[51]  J. Boylan,et al.  Forecasting for Items with Intermittent Demand , 1996 .

[52]  K. Isii On sharpness of tchebycheff-type inequalities , 1962 .

[53]  Peter Berck,et al.  Using the Semivariance to Estimate Safety-First Rules , 1982 .

[54]  Zhe George Zhang,et al.  Technical Note - A Risk-Averse Newsvendor Model Under the CVaR Criterion , 2009, Oper. Res..

[55]  Antonello E. Scorcu,et al.  Demand distribution dynamics in creative industries: The market for books in Italy , 2008, Inf. Econ. Policy.

[56]  Anja De Waegenaere,et al.  Robust Solutions of Optimization Problems Affected by Uncertain Probabilities , 2011, Manag. Sci..

[57]  Paul T. von Hippel,et al.  Mean, Median, and Skew: Correcting a Textbook Rule , 2005 .

[58]  Giuseppe Carlo Calafiore,et al.  Ambiguous Risk Measures and Optimal Robust Portfolios , 2007, SIAM J. Optim..

[59]  Donglei Du,et al.  Third-order extensions of Lo's semiparametric bound for European call options , 2009, Eur. J. Oper. Res..

[60]  Jiawei Zhang,et al.  Bounding Probability of Small Deviation: A Fourth Moment Approach , 2010, Math. Oper. Res..

[61]  M. Teboulle,et al.  Expected Utility, Penalty Functions, and Duality in Stochastic Nonlinear Programming , 1986 .

[62]  Jun-ya Gotoh,et al.  Newsvendor solutions via conditional value-at-risk minimization , 2007, Eur. J. Oper. Res..

[63]  J. B. Ward Determining Reorder Points When Demand is Lumpy , 1978 .