Cooperative and directional folding of the preQ1 riboswitch aptamer domain.
暂无分享,去创建一个
Riboswitches are cis-acting RNA fragments that regulate gene expression by sensing cellular levels of the associated small metabolites. In bacteria, the class I preQ(1) riboswitch allows the fine-tuning of queuosine biosynthesis in response to the intracellular concentration of the queuosine anabolic intermediate preQ(1). When binding preQ(1), the aptamer domain undergoes a significant degree of secondary and tertiary structural rearrangement and folds into an H-type pseudoknot. Conformational "switching" of the riboswitch aptamer domain upon recognizing its cognate metabolite plays a key role in the regulatory mechanism of the preQ(1) riboswitch. We investigate the folding mechanism of the preQ(1) riboswitch aptamer domain using all-atom Go̅-model simulations. The folding pathway of such a single domain is found to be cooperative and sequentially coordinated, as the folding proceeds in the 5' → 3' direction. This kinetically efficient folding mechanism suggests a fast ligand-binding response in competition with RNA elongation.
[1] 宁北芳,et al. 疟原虫var基因转换速率变化导致抗原变异[英]/Paul H, Robert P, Christodoulou Z, et al//Proc Natl Acad Sci U S A , 2005 .
[2] F. Young. Biochemistry , 1955, The Indian Medical Gazette.
[3] 김삼묘,et al. “Bioinformatics” 특집을 내면서 , 2000 .