Super-resolution fluorescence microscopy studies of human immunodeficiency virus

[1]  A. de Marco,et al.  Recent advances in retroviruses via cryo-electron microscopy , 2018, Retrovirology.

[2]  I. Sazanovich,et al.  Spironaphthoxazine switchable dyes for biological imaging† †Electronic supplementary information (ESI) available: Synthetic protocols, DFT calculations, crystal structure, and additional photo-physical and microscopy characterization. CCDC 1812758. For ESI and crystallographic data in CIF or other e , 2018, Chemical science.

[3]  G. Coceano,et al.  Enhanced photon collection enables four dimensional fluorescence nanoscopy of living systems , 2018, Nature Communications.

[4]  Rainer Heintzmann,et al.  Super-Resolution Structured Illumination Microscopy. , 2017, Chemical reviews.

[5]  J. Lippincott-Schwartz,et al.  A Consensus View of ESCRT-Mediated Human Immunodeficiency Virus Type 1 Abscission. , 2017, Annual review of virology.

[6]  J. Enderlein,et al.  Envelope glycoprotein mobility on HIV-1 particles depends on the virus maturation state , 2017, Nature Communications.

[7]  S. Hell,et al.  Fluorescence nanoscopy in cell biology , 2017, Nature Reviews Molecular Cell Biology.

[8]  Stefan W. Hell,et al.  Adaptive-illumination STED nanoscopy , 2017, Proceedings of the National Academy of Sciences.

[9]  B. Lagerholm,et al.  Exploring the potential of Airyscan microscopy for live cells imaging , 2017 .

[10]  A. Diaspro,et al.  Measurement of nanoscale three-dimensional diffusion in the interior of living cells by STED-FCS , 2017, Nature Communications.

[11]  Barbara Müller,et al.  A Versatile Tool for Live-Cell Imaging and Super-Resolution Nanoscopy Studies of HIV-1 Env Distribution and Mobility. , 2017, Cell chemical biology.

[12]  Bo-Jui Chang,et al.  csiLSFM combines light-sheet fluorescence microscopy and coherent structured illumination for a lateral resolution below 100 nm , 2017, Proceedings of the National Academy of Sciences.

[13]  J. Huisken,et al.  A guide to light-sheet fluorescence microscopy for multiscale imaging , 2017, Nature Methods.

[14]  S. Mayor,et al.  The mystery of membrane organization: composition, regulation and roles of lipid rafts , 2017, Nature Reviews Molecular Cell Biology.

[15]  Q. Sattentau,et al.  Astrocytes Resist HIV-1 Fusion but Engulf Infected Macrophage Material , 2017, Cell reports.

[16]  Brennan S. Dirk,et al.  HIV-1 Nef sequesters MHC-I intracellularly by targeting early stages of endocytosis and recycling , 2016, Scientific Reports.

[17]  J. Elf,et al.  Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes , 2016, Science.

[18]  S. Hell,et al.  Carboxylated Photoswitchable Diarylethenes for Biolabeling and Super‐Resolution RESOLFT Microscopy , 2016, Angewandte Chemie.

[19]  Barbara Müller,et al.  Stimulated Emission Depletion Nanoscopy Reveals Time-Course of Human Immunodeficiency Virus Proteolytic Maturation. , 2016, ACS nano.

[20]  Ricardo Henriques,et al.  Fast live-cell conventional fluorophore nanoscopy with ImageJ through super-resolution radial fluctuations , 2016, Nature Communications.

[21]  C. Eggeling,et al.  Photoswitchable Spiropyran Dyads for Biological Imaging , 2016, Organic letters.

[22]  Barbara Müller,et al.  Labeling of virus components for advanced, quantitative imaging analyses , 2016, FEBS letters.

[23]  Edward S. Allgeyer,et al.  Two-colour live-cell nanoscale imaging of intracellular targets , 2016, Nature Communications.

[24]  K. Y. Han,et al.  RESOLFT nanoscopy with photoswitchable organic fluorophores , 2015, Scientific Reports.

[25]  A. Trkola,et al.  The HIV-1 Entry Process: A Stoichiometric View. , 2015, Trends in microbiology.

[26]  Andrew Leis,et al.  Cryo-electron microscopy and single molecule fluorescent microscopy detect CD4 receptor induced HIV size expansion prior to cell entry. , 2015, Virology.

[27]  Ian M. Dobbie,et al.  SIMcheck: a Toolbox for Successful Super-resolution Structured Illumination Microscopy , 2015, Scientific Reports.

[28]  S. van de Linde,et al.  Light-induced cell damage in live-cell super-resolution microscopy , 2015, Scientific Reports.

[29]  Alberto Diaspro,et al.  The 2015 super-resolution microscopy roadmap , 2015, Journal of Physics D: Applied Physics.

[30]  M. Davidson,et al.  Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics , 2015, Science.

[31]  Stephan J Sigrist,et al.  Ultrafast, temporally stochastic STED nanoscopy of millisecond dynamics , 2015, Nature Methods.

[32]  E. Freed,et al.  HIV-1 assembly, release and maturation , 2015, Nature Reviews Microbiology.

[33]  S. Hell,et al.  Lens-based fluorescence nanoscopy , 2015, Quarterly Reviews of Biophysics.

[34]  A. Iwamoto,et al.  The V4 and V5 Variable Loops of HIV-1 Envelope Glycoprotein Are Tolerant to Insertion of Green Fluorescent Protein and Are Useful Targets for Labeling* , 2015, The Journal of Biological Chemistry.

[35]  Takeharu Nagai,et al.  A fast- and positively photoswitchable fluorescent protein for ultralow-laser-power RESOLFT nanoscopy , 2015, Nature Methods.

[36]  T. Hope,et al.  Complementary Assays Reveal a Low Level of CA Associated with Viral Complexes in the Nuclei of HIV-1-Infected Cells , 2015, Journal of Virology.

[37]  G. Lewis,et al.  Antigenic Properties of the Human Immunodeficiency Virus Envelope Glycoprotein Gp120 on Virions Bound to Target Cells , 2015, PLoS pathogens.

[38]  K. Gaus,et al.  Self-calibrated line-scan STED-FCS to quantify lipid dynamics in model and cell membranes. , 2015, Biophysical journal.

[39]  C. Bräuchle,et al.  Super-Resolution Imaging of ESCRT-Proteins at HIV-1 Assembly Sites , 2015, PLoS pathogens.

[40]  A. Trkola,et al.  Different Infectivity of HIV-1 Strains Is Linked to Number of Envelope Trimers Required for Entry , 2015, PLoS pathogens.

[41]  Walter Muranyi,et al.  Quantitative microscopy of functional HIV post-entry complexes reveals association of replication with the viral capsid , 2014, eLife.

[42]  S. Manley,et al.  A Quantitative Approach to Evaluate the Impact of Fluorescent Labeling on Membrane-Bound HIV-Gag Assembly by Titration of Unlabeled Proteins , 2014, PLoS ONE.

[43]  Christian Eggeling,et al.  Scanning STED-FCS reveals spatiotemporal heterogeneity of lipid interaction in the plasma membrane of living cells , 2014, Nature Communications.

[44]  Wesley R. Legant,et al.  Lattice light-sheet microscopy: Imaging molecules to embryos at high spatiotemporal resolution , 2014, Science.

[45]  Michelle S Itano,et al.  Temporal and spatial organization of ESCRT protein recruitment during HIV-1 budding , 2014, Proceedings of the National Academy of Sciences.

[46]  E. Freed,et al.  The role of matrix in HIV-1 envelope glycoprotein incorporation. , 2014, Trends in microbiology.

[47]  Nicolas Olivier,et al.  FALCON: fast and unbiased reconstruction of high-density super-resolution microscopy data , 2014, Scientific Reports.

[48]  A. Battistini,et al.  HIV-1 Latency: An Update of Molecular Mechanisms and Therapeutic Strategies , 2014, Viruses.

[49]  Martin J. Booth,et al.  Adaptive optical microscopy: the ongoing quest for a perfect image , 2014, Light: Science & Applications.

[50]  Jens Michaelis,et al.  Simultaneous dual-color 3D STED microscopy. , 2014, Optics express.

[51]  Flavie Lavoie-Cardinal,et al.  Two-color RESOLFT nanoscopy with green and red fluorescent photochromic proteins. , 2014, Chemphyschem : a European journal of chemical physics and physical chemistry.

[52]  Prabuddha Sengupta,et al.  Distribution of ESCRT Machinery at HIV Assembly Sites Reveals Virus Scaffolding of ESCRT Subunits , 2014, Science.

[53]  Johannes B. Woehrstein,et al.  Multiplexed 3D Cellular Super-Resolution Imaging with DNA-PAINT and Exchange-PAINT , 2014, Nature Methods.

[54]  M. Lakadamyali,et al.  Single-molecule evaluation of fluorescent protein photoactivation efficiency using an in vivo nanotemplate , 2014, Nature Methods.

[55]  Sjoerd Stallinga,et al.  Re-scan confocal microscopy: scanning twice for better resolution. , 2013, Biomedical optics express.

[56]  Brahim Lounis,et al.  Large parallelization of STED nanoscopy using optical lattices. , 2013, Optics express.

[57]  Christian Eggeling,et al.  Nanoscopy with more than 100,000 'doughnuts' , 2013, Nature Methods.

[58]  Michael W. Davidson,et al.  Video-rate nanoscopy enabled by sCMOS camera-specific single-molecule localization algorithms , 2013, Nature Methods.

[59]  Nathan H. Roy,et al.  Clustering and Mobility of HIV-1 Env at Viral Assembly Sites Predict Its Propensity To Induce Cell-Cell Fusion , 2013, Journal of Virology.

[60]  Sjoerd Stallinga,et al.  Measuring image resolution in optical nanoscopy , 2013, Nature Methods.

[61]  Bernardo L Sabatini,et al.  Live-cell superresolution imaging by pulsed STED two-photon excitation microscopy. , 2013, Biophysical journal.

[62]  M. Heilemann,et al.  Super-Resolution Microscopy Reveals Specific Recruitment of HIV-1 Envelope Proteins to Viral Assembly Sites Dependent on the Envelope C-Terminal Tail , 2013, PLoS pathogens.

[63]  Hans-Georg Kräusslich,et al.  Comparative lipidomics analysis of HIV‐1 particles and their producer cell membrane in different cell lines , 2013, Cellular microbiology.

[64]  M. Davidson,et al.  Noninvasive Imaging beyond the Diffraction Limit of 3D Dynamics in Thickly Fluorescent Specimens , 2012, Cell.

[65]  H. Leonhardt,et al.  Direct and Dynamic Detection of HIV-1 in Living Cells , 2012, PloS one.

[66]  Thorsten Staudt,et al.  Maturation-Dependent HIV-1 Surface Protein Redistribution Revealed by Fluorescence Nanoscopy , 2012, Science.

[67]  Christian Eggeling,et al.  Nanoscopy of Living Brain Slices with Low Light Levels , 2012, Neuron.

[68]  Martin J Booth,et al.  Adaptive optics enables 3D STED microscopy in aberrating specimens. , 2012, Optics express.

[69]  Suliana Manley,et al.  Quantitative super-resolution imaging reveals protein stoichiometry and nanoscale morphology of assembling HIV-Gag virions. , 2012, Nano letters.

[70]  Ricardo Henriques,et al.  Superresolution imaging of HIV in infected cells with FlAsH-PALM , 2012, Proceedings of the National Academy of Sciences.

[71]  Hari Shroff,et al.  Resolution Doubling in Live, Multicellular Organisms via Multifocal Structured Illumination Microscopy , 2012, Nature Methods.

[72]  K. Gaus,et al.  HIV taken by STORM: Super-resolution fluorescence microscopy of a viral infection , 2012, Virology Journal.

[73]  A. Diaspro,et al.  Live-cell 3D super-resolution imaging in thick biological samples , 2011, Nature Methods.

[74]  J. Hofkens,et al.  Quantitative Multicolor Super-Resolution Microscopy Reveals Tetherin HIV-1 Interaction , 2011, PLoS pathogens.

[75]  Dylan T Burnette,et al.  Bayesian localisation microscopy reveals nanoscale podosome dynamics , 2011, Nature Methods.

[76]  Mark Bates,et al.  Evaluation of fluorophores for optimal performance in localization-based super-resolution imaging , 2011, Nature Methods.

[77]  Christian Eggeling,et al.  Diffraction-unlimited all-optical imaging and writing with a photochromic GFP , 2011, Nature.

[78]  U Valentin Nägerl,et al.  STED nanoscopy of actin dynamics in synapses deep inside living brain slices. , 2011, Biophysical journal.

[79]  M. Heilemann,et al.  A SNAP-Tagged Derivative of HIV-1—A Versatile Tool to Study Virus-Cell Interactions , 2011, PloS one.

[80]  S. Hell,et al.  Sharper low-power STED nanoscopy by time gating , 2011, Nature Methods.

[81]  X. Zhuang,et al.  Fast three-dimensional super-resolution imaging of live cells , 2011, Nature Methods.

[82]  M. Davidson,et al.  Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination , 2011, Nature Methods.

[83]  C. Bräuchle,et al.  Live-cell visualization of dynamics of HIV budding site interactions with an ESCRT component , 2011, Nature Cell Biology.

[84]  Thorsten Staudt,et al.  Far-field optical nanoscopy with reduced number of state transition cycles. , 2011, Optics express.

[85]  P. Bieniasz,et al.  Dynamics of ESCRT protein recruitment during retroviral assembly , 2011, Nature Cell Biology.

[86]  Roland Marquet,et al.  Labeling of Multiple HIV-1 Proteins with the Biarsenical-Tetracysteine System , 2011, PloS one.

[87]  Q. Sattentau,et al.  Cell-to-Cell Spread of Retroviruses , 2010, Viruses.

[88]  Jörg Enderlein,et al.  Image scanning microscopy. , 2010, Physical review letters.

[89]  S. Weiss,et al.  Fast, background-free, 3D super-resolution optical fluctuation imaging (SOFI) , 2009, Proceedings of the National Academy of Sciences.

[90]  Karl Rohr,et al.  Dynamics of HIV-1 Assembly and Release , 2009, PLoS pathogens.

[91]  Gael Moneron,et al.  Two-photon excitation STED microscopy. , 2009, Optics express.

[92]  S. Hell,et al.  Diffraction-unlimited three-dimensional optical nanoscopy with opposing lenses , 2009 .

[93]  Jan Vogelsang,et al.  Controlling the fluorescence of ordinary oxazine dyes for single-molecule switching and superresolution microscopy , 2009, Proceedings of the National Academy of Sciences.

[94]  Bryant B. Chhun,et al.  Super-Resolution Video Microscopy of Live Cells by Structured Illumination , 2009, Nature Methods.

[95]  Mike Heilemann,et al.  Multicolor photoswitching microscopy for subdiffraction-resolution fluorescence imaging , 2009, Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology.

[96]  Frank Y. S. Chuang,et al.  Quantitative 3D Video Microscopy of HIV Transfer Across T Cell Virological Synapses , 2009, Science.

[97]  J. Lippincott-Schwartz,et al.  Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure , 2009, Proceedings of the National Academy of Sciences.

[98]  Samuel J. Lord,et al.  Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function , 2009, Proceedings of the National Academy of Sciences.

[99]  S. Hell,et al.  Direct observation of the nanoscale dynamics of membrane lipids in a living cell , 2009, Nature.

[100]  T. Bonhoeffer,et al.  Live-cell imaging of dendritic spines by STED microscopy , 2008, Proceedings of the National Academy of Sciences.

[101]  P. Uchil,et al.  Retroviruses Human Immunodeficiency Virus and Murine Leukemia Virus Are Enriched in Phosphoinositides , 2008, Journal of Virology.

[102]  S. Hell,et al.  Fluorescence nanoscopy by ground-state depletion and single-molecule return , 2008, Nature Methods.

[103]  M. Heilemann,et al.  Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes. , 2008, Angewandte Chemie.

[104]  Michael Emerman,et al.  HIV-1 accessory proteins--ensuring viral survival in a hostile environment. , 2008, Cell host & microbe.

[105]  S. Hess,et al.  Three-dimensional sub–100 nm resolution fluorescence microscopy of thick samples , 2008, Nature Methods.

[106]  S. Hell,et al.  Spherical nanosized focal spot unravels the interior of cells , 2008, Nature Methods.

[107]  Marc C. Johnson,et al.  The interferon-induced protein BST-2 restricts HIV-1 release and is downregulated from the cell surface by the viral Vpu protein. , 2008, Cell host & microbe.

[108]  Stefan W. Hell,et al.  Supporting Online Material Materials and Methods Figs. S1 to S9 Tables S1 and S2 References Video-rate Far-field Optical Nanoscopy Dissects Synaptic Vesicle Movement , 2022 .

[109]  Andreas Schönle,et al.  Resolution scaling in STED microscopy. , 2008, Optics express.

[110]  Mark Bates,et al.  Three-Dimensional Super-Resolution Imaging by Stochastic Optical Reconstruction Microscopy , 2008, Science.

[111]  S. Hell,et al.  Fluorescence nanoscopy with optical sectioning by two-photon induced molecular switching using continuous-wave lasers. , 2008, Chemphyschem : a European journal of chemical physics and physical chemistry.

[112]  J. Lippincott-Schwartz,et al.  High-density mapping of single-molecule trajectories with photoactivated localization microscopy , 2008, Nature Methods.

[113]  P. Bieniasz,et al.  Tetherin inhibits retrovirus release and is antagonized by HIV-1 Vpu , 2008, Nature.

[114]  Michael W. Davidson,et al.  Dual-color superresolution imaging of genetically expressed probes within individual adhesion complexes , 2007, Proceedings of the National Academy of Sciences.

[115]  S. Hell,et al.  Reversible photoswitching enables single‐molecule fluorescence fluctuation spectroscopy at high molecular concentration , 2007, Microscopy research and technique.

[116]  Mark Bates,et al.  Multicolor Super-Resolution Imaging with Photo-Switchable Fluorescent Probes , 2007, Science.

[117]  A. Egner,et al.  Two-color far-field fluorescence nanoscopy based on photoswitchable emitters , 2007 .

[118]  Sriram Subramaniam,et al.  Electron Tomography of the Contact between T Cells and SIV/HIV-1: Implications for Viral Entry , 2007, PLoS pathogens.

[119]  S. Hell,et al.  Wide‐field subdiffraction RESOLFT microscopy using fluorescent protein photoswitching , 2007, Microscopy research and technique.

[120]  R. Hochstrasser,et al.  Wide-field subdiffraction imaging by accumulated binding of diffusing probes , 2006, Proceedings of the National Academy of Sciences.

[121]  Michael D. Mason,et al.  Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. , 2006, Biophysical journal.

[122]  Michael J Rust,et al.  Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM) , 2006, Nature Methods.

[123]  J. Lippincott-Schwartz,et al.  Imaging Intracellular Fluorescent Proteins at Nanometer Resolution , 2006, Science.

[124]  Hans-Georg Kräusslich,et al.  The HIV lipidome: a raft with an unusual composition. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[125]  Christian Eggeling,et al.  Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[126]  Christian Eggeling,et al.  Structure and mechanism of the reversible photoswitch of a fluorescent protein. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[127]  Volker Westphal,et al.  Nanoscale resolution in the focal plane of an optical microscope. , 2005, Physical review letters.

[128]  F. Del Bene,et al.  Optical Sectioning Deep Inside Live Embryos by Selective Plane Illumination Microscopy , 2004, Science.

[129]  Kenneth A. Taylor,et al.  Electron tomography analysis of envelope glycoprotein trimers on HIV and simian immunodeficiency virus virions , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[130]  S. Hell,et al.  Imaging and writing at the nanoscale with focused visible light through saturable optical transitions , 2003 .

[131]  S W Hell,et al.  Breaking Abbe's diffraction resolution limit in fluorescence microscopy with stimulated emission depletion beams of various shapes. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[132]  S. Hell,et al.  Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[133]  M. Gustafsson Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy , 2000, Journal of microscopy.

[134]  J. Korlach,et al.  Fluorescence correlation spectroscopy with single-molecule sensitivity on cell and model membranes. , 1999, Cytometry.

[135]  S. Hell,et al.  Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. , 1994, Optics letters.

[136]  D H Burns,et al.  Orthogonal‐plane fluorescence optical sectioning: Three‐dimensional imaging of macroscopic biological specimens , 1993, Journal of microscopy.

[137]  W. Webb,et al.  Thermodynamic Fluctuations in a Reacting System-Measurement by Fluorescence Correlation Spectroscopy , 1972 .

[138]  E. Abbe Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung , 1873 .

[139]  M. Heilemann,et al.  Single-molecule coordinate-based analysis of the morphology of HIV-1 assembly sites with near-molecular spatial resolution , 2012, Histochemistry and Cell Biology.