Thermal non-equilibrium transport in colloids

A temperature gradient acts like an external field on colloidal suspensions and drives the solute particles to the cold or to the warm, depending on interfacial and solvent properties. We discuss different transport mechanisms for charged colloids, and how a thermal gradient gives rise to companion fields. Particular emphasis is put on the thermal response of the electrolyte solution: positive and negative ions diffuse along the temperature gradient and thus induce a thermoelectric field which in turn acts on the colloidal charges. Regarding polymers in organic solvents, the physical mechanism changes with decreasing molecular weight: high polymers are described in the framework of macroscopic hydrodynamics; for short chains and molecular mixtures of similar size, the Brownian motion of solute and solvent becomes important.

[1]  A. Firoozabadi,et al.  A new model of thermal diffusion coefficients in binary hydrocarbon mixtures , 1998 .

[2]  T. Bickel,et al.  Thermophoresis of charged colloidal particles. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[3]  W. Köhler,et al.  On the Molar Mass Dependence of the Thermal Diffusion Coefficient of Polymer Solutions , 2005 .

[4]  Jeong‐long Lin,et al.  Thermal diffusion of lanthanide chlorides , 1983 .

[5]  J. Dhont,et al.  Thermal-diffusive behavior of a dilute solution of charged colloids. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[6]  G. Meyerhoff,et al.  Die Messung der Diffusionskoeffizienten von Hochpolymeren in Lösung mit einer konvektionsfreien Thermodiffusionszelle , 1959 .

[7]  M. Giglio,et al.  Soret-Type Motion of Macromolecules in Solution , 1977 .

[8]  A. Würger,et al.  Hydrodynamic attraction of immobile particles due to interfacial forces. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[9]  R. Shankar Subramanian,et al.  The migration of liquid drops in a vertical temperature gradient , 1989 .

[10]  T. Wassmer 6 , 1900, EXILE.

[11]  E. Bringuier,et al.  Colloid transport in nonuniform temperature. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[12]  F. A. Morrison,et al.  Electrophoresis of a particle of arbitrary shape , 1970 .

[13]  E. Ruckenstein Can phoretic motions be treated as interfacial tension gradient driven phenomena , 1981 .

[14]  D. A. Saville,et al.  Colloidal Dispersions: ACKNOWLEDGEMENTS , 1989 .

[15]  J. N. Wilson,et al.  Theory of the Thermal Diffusion of Electrolytes in a Clusius Column , 1949 .

[16]  A. Würger,et al.  Thermophoresis at a charged surface: the role of hydrodynamic slip , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[17]  Roberto Piazza,et al.  Thermophoresis of microemulsion droplets: size dependence of the Soret effect. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[18]  K. Morozov Thermal diffusion in disperse systems , 1999 .

[19]  Roberto Piazza,et al.  Does thermophoretic mobility depend on particle size? , 2008, Physical review letters.

[20]  Dieter Braun,et al.  An optical conveyor for molecules. , 2009, Nano letters.

[21]  F. Zheng Thermophoresis of spherical and non-spherical particles: a review of theories and experiments. , 2002, Advances in colloid and interface science.

[22]  R. Piazza,et al.  Thermophoresis as a probe of particle?solvent interactions: The case of protein solutionsPresented at the 17th Conference of the European Colloid & Interface Science Society, Firenze, Italy, September 21?26, 2003. , 2004 .

[23]  F. Leroy,et al.  Soret and mass diffusion measurements and molecular dynamics simulations of n-pentane–n-decane mixtures , 2002 .

[24]  J. Giddings,et al.  Field-flow fractionation: analysis of macromolecular, colloidal, and particulate materials. , 1993, Science.

[25]  S. Semenov,et al.  Thermophoresis of dissolved molecules and polymers: Consideration of the temperature-induced macroscopic pressure gradient. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[26]  F. Müller-Plathe,et al.  The Soret effect in dilute polymer solutions: influence of chain length, chain stiffness, and solvent quality. , 2006, The Journal of chemical physics.

[27]  S. Magazù,et al.  Hydration Study of PEG/Water Mixtures by Quasi Elastic Light Scattering, Acoustic and Rheological Measurements , 2002 .

[28]  丁東鎭 12 , 1993, Algo habla con mi voz.

[29]  Alois Würger,et al.  Thermophoresis in colloidal suspensions driven by Marangoni forces. , 2007, Physical review letters.

[30]  H. Brenner The slow motion of a sphere through a viscous fluid towards a plane surface , 1961 .

[31]  Dieter Braun,et al.  Optothermal molecule trapping by opposing fluid flow with thermophoretic drift. , 2006, Physical review letters.

[32]  D. Prieve,et al.  Diffusiophoresis of a rigid sphere through a viscous electrolyte solution , 1987 .

[33]  W. Enge,et al.  Correlation between the Soret coefficient and the static structure factor in a polymer blend , 2004, The European physical journal. E, Soft matter.

[34]  J. Dhont Thermodiffusion of interacting colloids. I. A statistical thermodynamics approach. , 2004, The Journal of chemical physics.

[35]  Counterion density profiles at charged flexible membranes. , 2004, Physical review letters.

[36]  R Di Leonardo,et al.  Colloidal attraction induced by a temperature gradient. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[37]  Stationary motion of the adiabatic piston , 1998, cond-mat/9812359.

[38]  W. Köhler,et al.  Diffusion and thermal diffusion of semidilute to concentrated solutions of polystyrene in toluene in the vicinity of the glass transition. , 2002, Physical review letters.

[39]  W. Köhler,et al.  Molecular origin of thermal diffusion in benzene + cyclohexane mixtures. , 2001, Physical review letters.

[40]  D. Braun,et al.  Thermophoresis of single stranded DNA , 2010, Electrophoresis.

[41]  E. Trizac,et al.  Liquid friction on charged surfaces: from hydrodynamic slippage to electrokinetics. , 2006, The Journal of chemical physics.

[42]  Simone Wiegand,et al.  Thermal nonequilibrium phenomena in fluid mixtures , 2002 .

[43]  L. P. Safonova,et al.  The Thermal Diffusion of Hydrogen Chloride in Water–Monoatomic Alcohol Mixtures at 298 K , 2006 .

[44]  S. Quake,et al.  Microfluidics: Fluid physics at the nanoliter scale , 2005 .

[45]  J. Maxwell,et al.  On Stresses in Rarified Gases Arising from Inequalities of Temperature , 2022 .

[46]  D. Braun,et al.  Thermodiffusion of charged colloids: single-particle diffusion. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[47]  Dieter Braun,et al.  Why molecules move along a temperature gradient , 2006, Proceedings of the National Academy of Sciences.

[48]  J. Dhont Thermodiffusion of interacting colloids. II. A microscopic approach. , 2004, The Journal of chemical physics.

[49]  D. Grier A revolution in optical manipulation , 2003, Nature.

[50]  F. Bellucci,et al.  Nonisothermal matter transport in sodium chloride and potassium chloride aqueous solutions. 1. Homogeneous system (thermal diffusion) , 1982 .

[51]  S. Semenov,et al.  Mechanism of Polymer Thermophoresis in Nonaqueous Solvents , 2000 .

[52]  W. Köhler,et al.  From Small Molecules to High Polymers: Investigation of the Crossover of Thermal Diffusion in Dilute Polystyrene Solutions , 2008 .

[53]  L. G. Longsworth The Temperature Dependence of the Soret Coefficient of Aqueous Potassium Chloride , 1957 .

[54]  K. Yoshikawa,et al.  Forward and backward laser-guided motion of an oil droplet. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[55]  A. Würger Transport in charged colloids driven by thermoelectricity. , 2008, Physical review letters.

[56]  R. Kita,et al.  Ludwig−Soret Effect of Poly(N-isopropylacrylamide): Temperature Dependence Study in Monohydric Alcohols , 2007 .

[57]  A. Würger Temperature dependence of the soret motion in colloids. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[58]  I. Teraoka Polymer solutions: An introduction to physical properties , 2002 .

[59]  P. Pieranski Thermopermeation in bicontinuous lyotropic crystals , 2009 .

[60]  R. Kühn,et al.  Disjoining pressure of discrete surface charges on thin aqueous films. , 2002, Physical review letters.

[61]  J. Luettmer-Strathmann,et al.  Study of the thermal diffusion behavior of alkane/benzene mixtures by thermal diffusion forced rayleigh scattering experiments and lattice model calculations. , 2006, The journal of physical chemistry. B.

[62]  J. Turner,et al.  The Soret effect in some 0·01 normal aqueous electrolytes , 1960 .

[63]  J. Happel,et al.  Low Reynolds number hydrodynamics , 1965 .

[64]  A. Ajdari,et al.  Boosting migration of large particles by solute contrasts. , 2008, Nature materials.

[65]  On the nature of thermal diffusion in binary Lennard-Jones liquids , 1999, cond-mat/9910397.

[66]  Werner Köhler,et al.  Polymer Polydispersity Analysis by Thermal Diffusion Forced Rayleigh Scattering , 1996 .

[67]  Andrei S. Dukhin,et al.  Fundamentals of Interface and Colloid Science , 2010 .

[68]  J. Giddings,et al.  Thermophoresis of metal particles in a liquid , 1995 .

[69]  S. K. Ratkje,et al.  On the molecular mechanism of thermal diffusion in liquids , 1993 .

[70]  S. Wiegand Thermal diffusion in liquid mixtures and polymer solutions , 2004 .

[71]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[72]  Migration of a droplet in a liquid: effect of insoluble surfactants and thermal gradient , 2002 .

[73]  Hong-Ren Jiang,et al.  Manipulation of colloids by a nonequilibrium depletion force in a temperature gradient. , 2009, Physical review letters.

[74]  R. Clark Jones,et al.  On the Theory of Isotope Separation by Thermal Diffusion , 1939 .

[75]  R. Subramanian,et al.  Thermocapillary migration of a droplet with insoluble surfactant , 1989 .

[76]  T. Bickel,et al.  Thermodiffusion of charged micelles. , 2005, Physical review letters.

[77]  Roberto Piazza,et al.  Thermophoresis in colloidal suspensions , 2008 .

[78]  M. Bohmer In Situ Observation of 2-Dimensional Clustering during Electrophoretic Deposition , 1996 .

[79]  R. Astumian Coupled transport at the nanoscale: The unreasonable effectiveness of equilibrium theory , 2007, Proceedings of the National Academy of Sciences.

[80]  T. Squires Effective pseudo-potentials of hydrodynamic origin , 2001, Journal of Fluid Mechanics.

[81]  D. Saville,et al.  Assembly of colloidal aggregates by electrohydrodynamic flow: Kinetic experiments and scaling analysis. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[82]  Roberto Piazza,et al.  Soret effect in interacting micellar solutions. , 2002, Physical review letters.

[83]  Andrew G. Glen,et al.  APPL , 2001 .

[84]  Roberto Piazza,et al.  Thermophoresis in protein solutions , 2003 .

[85]  H. Brenner Elementary kinematical model of thermal diffusion in liquids and gases. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[86]  John L. Anderson,et al.  Diffusiophoresis caused by gradients of strongly adsorbing solutes , 1991 .

[87]  D. Prieve,et al.  Diffusiophoresis: Migration of Colloidal Particles in Gradients of Solute Concentration , 1984 .

[88]  H. Morgan,et al.  Ac electrokinetics: a review of forces in microelectrode structures , 1998 .

[89]  C. Mou,et al.  Single-ion heat of transport in electrolyte solutions: a hydrodynamic theory , 1989 .

[90]  L. J. T. M. Kempers,et al.  A comprehensive thermodynamic theory of the Soret effect in a multicomponent gas, liquid, or solid , 2001 .

[91]  Hsan-Yin Hsu,et al.  Optically actuated thermocapillary movement of gas bubbles on an absorbing substrate. , 2007, Applied physics letters.

[92]  R. D. Schroll,et al.  Laser microfluidics: fluid actuation by light , 2009, 0903.1739.

[93]  P. Artola,et al.  Microscopic interpretation of a pure chemical contribution to the Soret effect. , 2007, Physical review letters.

[94]  C Van den Broeck,et al.  Rectification of thermal fluctuations in ideal gases. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[95]  F. Brochard,et al.  Motions of droplets on solid surfaces induced by chemical or thermal gradients , 1989 .

[96]  R. Rusconi,et al.  Thermal-lensing measurement of particle thermophoresis in aqueous dispersions , 2004 .

[97]  Sigurd Wagner,et al.  Effect of contact angle hysteresis on thermocapillary droplet actuation , 2005 .

[98]  P. B. Warren,et al.  Phase Behaviour of Colloid + Polymer Mixtures , 1992 .

[99]  S. Kosmella,et al.  Polyelectrolytes and Nanoparticles , 2007 .

[100]  W. Köhler,et al.  Thermal Diffusion of Dilute Polymer Solutions: The Role of Chain Flexibility and the Effective Segment Size , 2009 .

[101]  W. Briels,et al.  Single-particle thermal diffusion of charged colloids: Double-layer theory in a temperature gradient , 2008, The European physical journal. E, Soft matter.

[102]  P. Blanco,et al.  Determination of thermal diffusion coefficient in equimolar n-alkane mixtures: Empirical correlations. , 2008, The Journal of chemical physics.

[103]  Dieter Braun,et al.  Trapping of DNA by thermophoretic depletion and convection. , 2002, Physical review letters.

[104]  Seyyed Nader Rasuli,et al.  Soret motion of a charged spherical colloid. , 2007, Physical review letters.

[105]  S. Chao,et al.  Three dimensional simulation on binding efficiency of immunoassay for a biosensor with applying electrothermal effect , 2008, Heat and Mass Transfer.

[106]  J. Douglas,et al.  Thermal and Mass Diffusion in a Semidilute Good Solvent-Polymer Solution , 1999 .

[107]  Paul Mulvaney,et al.  Preparation of ordered colloid monolayers by electrophoretic deposition , 1993 .

[108]  J. Blake,et al.  A note on the image system for a stokeslet in a no-slip boundary , 1971, Mathematical Proceedings of the Cambridge Philosophical Society.

[109]  S. A. Eide,et al.  Soret coefficient and isothermal diffusivity of aqueous solutions of five principal salt constituents of seawater , 1981 .

[110]  R. H. Fowler The Mathematical Theory of Non-Uniform Gases , 1939, Nature.

[111]  D. Caldwell Measurement of negative thermal diffusion coefficients by observing the onset of thermohaline convection , 1973 .

[112]  S. Volz,et al.  Thermodiffusion in model nanofluids by molecular dynamics simulations. , 2007, The Journal of chemical physics.

[113]  K. Denbigh The heat of transport in binary regular solutions , 1952 .

[114]  Z. Jiao,et al.  Thermocapillary actuation of droplet in a planar microchannel , 2008 .

[115]  Harold A. Abramson,et al.  ELECTROKINETIC PHENOMENA , 1933, The Journal of general physiology.

[116]  Giant amplification of interfacially driven transport by hydrodynamic slip: diffusio-osmosis and beyond. , 2006, Physical review letters.

[117]  J. A. Quinn,et al.  Diffusion-induced banding of colloid particles via diffusiophoresis: 2. Non-electrolytes , 1989 .

[118]  G. Homsy,et al.  Thermocapillary migration of long bubbles in polygonal tubes. II. Experiments , 2003 .

[119]  François Gallaire,et al.  Thermocapillary valve for droplet production and sorting. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[120]  A. Moreira,et al.  Binding of similarly charged plates with counterions only. , 2001, Physical review letters.

[121]  R. W. O'Brien The solution of the electrokinetic equations for colloidal particles with thin double layers , 1983 .

[122]  W. Köhler,et al.  On the temperature dependence of thermal diffusion of liquid mixtures , 2007 .

[123]  W. Köhler,et al.  Thermal diffusion of dilute polymer solutions: the role of solvent viscosity. , 2006, The Journal of chemical physics.

[124]  G. S. Mcnab,et al.  Thermophoresis in liquids , 1973 .

[125]  Michael F Schatz,et al.  Optical manipulation of microscale fluid flow. , 2003, Physical review letters.

[126]  Jack W. Szostak,et al.  Formation of Protocell-like Vesicles in a Thermal Diffusion Column , 2009, Journal of the American Chemical Society.

[127]  John L. Anderson,et al.  Colloid Transport by Interfacial Forces , 1989 .

[128]  Elliott H. Lieb,et al.  Some problems in statistical mechanics that I would like to see solved , 1999 .

[129]  A. Würger Molecular-weight dependent thermal diffusion in dilute polymer solutions. , 2009, Physical review letters.

[130]  E. D. Eastman THEORY OF THE SORET EFFECT , 1928 .

[131]  M. N. Myers,et al.  Thermal Diffusion of Polystyrene in Eight Solvents by an Improved Thermal Field-Flow Fractionation Methodology , 1976 .

[132]  Gerard C L Wong,et al.  Temperature dependence of thermodiffusion in aqueous suspensions of charged nanoparticles. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[133]  C. Ybert,et al.  Colloidal motility and pattern formation under rectified diffusiophoresis. , 2010, Physical review letters.

[134]  Hans-Jürgen Butt,et al.  Boundary slip in Newtonian liquids: a review of experimental studies , 2005 .

[135]  R. Subramanian,et al.  Thermocapillary motion of a liquid drop on a horizontal solid surface. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[136]  D. C. Henry The cataphoresis of suspended particles. Part I.—The equation of cataphoresis , 1931 .

[137]  Michael Seul,et al.  Assembly of ordered colloidal aggregrates by electric-field-induced fluid flow , 1997, Nature.

[138]  E. Dougherty,et al.  THERMAL DIFFUSION AND MOLECULAR MOTION IN LIQUIDS , 1955 .

[139]  A. Würger,et al.  Drift–diffusion kinetics of a confined colloid , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[140]  D. G. Leaist,et al.  Soret Coefficients for Aqueous Polyethylene Glycol Solutions and Some Tests of the Segmental Model of Polymer Thermal Diffusion , 2003 .

[141]  Hui Ning,et al.  Thermal diffusion behavior of hard-sphere suspensions. , 2006, The Journal of chemical physics.

[142]  R. Subramanian,et al.  The thermocapillary migration of a droplet with insoluble surfactant , 1989 .

[143]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[144]  François Gallaire,et al.  Laser-induced force on a microfluidic drop: origin and magnitude. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[145]  Ilhan A. Aksay,et al.  Assembly of Colloidal Crystals at Electrode Interfaces , 1997 .

[146]  J. S. Goldstein,et al.  The motion of bubbles in a vertical temperature gradient , 1959, Journal of Fluid Mechanics.

[147]  Minsub Han Thermophoresis in liquids: a molecular dynamics simulation study. , 2005, Journal of colloid and interface science.

[148]  Dieter Braun,et al.  Extreme accumulation of nucleotides in simulated hydrothermal pore systems , 2007, Proceedings of the National Academy of Sciences.

[149]  P. Epstein Zur Theorie des Radiometers , 1929 .

[150]  Todd M. Squires,et al.  The influence of hydrodynamic slip on the electrophoretic mobility of a spherical colloidal particle , 2009 .

[151]  R. Rusconi,et al.  The “macromolecular tourist": Universal temperature dependence of thermal diffusion in aqueous colloidal suspensions , 2006, The European physical journal. E, Soft matter.

[152]  D. Cahill,et al.  Transport of nanoscale latex spheres in a temperature gradient. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[153]  John L. Anderson,et al.  Boundary effects on electrophoretic motion of colloidal spheres , 1985, Journal of Fluid Mechanics.

[154]  R. Piazza,et al.  Thermophoresis and thermoelectricity in surfactant solutions. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[155]  M. T. Santini,et al.  Positively charged polymer polylysine-induced cell adhesion molecule redistribution in K562 cells , 1998, Journal of materials science. Materials in medicine.

[156]  J. Giddings,et al.  Characterization of thermal diffusion in polymer solutions by thermal field-flow fractionation: effects of molecular weight and branching , 1987 .