Multi-Objective Particle Swarm Optimizers : A Survey of the State-ofthe-Art

The success of the Particle Swarm Optimization (PSO) algorithm as a single-objective optimizer (mainly when dealing with continuous search spaces) has motivated researchers to extend the use of this bio-inspired technique to other areas. One of them is multi-objective optimization. Despite the fact that the first proposal of a Multi-Objective Particle Swarm Optimizer (MOPSO) is over six years old, a considerable number of other algorithms have been proposed since then. This paper presents a comprehensive review of the various MOPSOs reported in the specialized literature. As part of this review, we include a classification of the approaches, and we identify the main features of each proposal. In the last part of the paper, we list some of the topics within this field that we consider as promising areas of future research.

[1]  J. D. Schaffer,et al.  Multiple Objective Optimization with Vector Evaluated Genetic Algorithms , 1985, ICGA.

[2]  David E. Goldberg,et al.  Genetic Algorithms with Sharing for Multimodalfunction Optimization , 1987, ICGA.

[3]  Kalyanmoy Deb,et al.  An Investigation of Niche and Species Formation in Genetic Function Optimization , 1989, ICGA.

[4]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[5]  R. W. Dobbins,et al.  Computational intelligence PC tools , 1996 .

[6]  J. Dennis,et al.  A closer look at drawbacks of minimizing weighted sums of objectives for Pareto set generation in multicriteria optimization problems , 1997 .

[7]  Russell C. Eberhart,et al.  A discrete binary version of the particle swarm algorithm , 1997, 1997 IEEE International Conference on Systems, Man, and Cybernetics. Computational Cybernetics and Simulation.

[8]  G. Rudolph On a multi-objective evolutionary algorithm and its convergence to the Pareto set , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[9]  Russell C. Eberhart,et al.  Comparison between Genetic Algorithms and Particle Swarm Optimization , 1998, Evolutionary Programming.

[10]  Chilukuri K. Mohan,et al.  Analysis of a simple particle swarm optimization system , 1998 .

[11]  Russell C. Eberhart,et al.  Parameter Selection in Particle Swarm Optimization , 1998, Evolutionary Programming.

[12]  Kaisa Miettinen,et al.  Nonlinear multiobjective optimization , 1998, International series in operations research and management science.

[13]  Peter J. Angeline,et al.  Evolutionary Optimization Versus Particle Swarm Optimization: Philosophy and Performance Differences , 1998, Evolutionary Programming.

[14]  C. A. Coello Coello,et al.  A Comprehensive Survey of Evolutionary-Based Multiobjective Optimization Techniques , 1999, Knowledge and Information Systems.

[15]  R. Eberhart,et al.  Empirical study of particle swarm optimization , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[16]  Richard C. Chapman,et al.  Application of Particle Swarm to Multiobjective Optimization , 1999 .

[17]  Lothar Thiele,et al.  Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach , 1999, IEEE Trans. Evol. Comput..

[18]  Lothar Thiele,et al.  Comparison of Multiobjective Evolutionary Algorithms: Empirical Results , 2000, Evolutionary Computation.

[19]  E. Ozcan,et al.  Particle swarm optimization: surfing the waves , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[20]  Lothar Thiele,et al.  Comparison of Multiobjective Evolutionary Algorithms: Empirical Results , 2000, Evolutionary Computation.

[21]  David W. Corne,et al.  Approximating the Nondominated Front Using the Pareto Archived Evolution Strategy , 2000, Evolutionary Computation.

[22]  Tapabrata Ray,et al.  An Evolutionary Algorithm for Constrained Optimization , 2000, GECCO.

[23]  Tong Heng Lee,et al.  Evolutionary algorithms with dynamic population size and local exploration for multiobjective optimization , 2001, IEEE Trans. Evol. Comput..

[24]  Yaochu Jin,et al.  Dynamic Weighted Aggregation for evolutionary multi-objective optimization: why does it work and how? , 2001 .

[25]  Tapabrata Ray,et al.  A Swarm Metaphor for Multiobjective Design Optimization , 2002 .

[26]  Andries P. Engelbrecht,et al.  Computational Intelligence: An Introduction , 2002 .

[27]  Marco Laumanns,et al.  Combining Convergence and Diversity in Evolutionary Multiobjective Optimization , 2002, Evolutionary Computation.

[28]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[29]  Gary B. Lamont,et al.  Evolutionary Algorithms for Solving Multi-Objective Problems , 2002, Genetic Algorithms and Evolutionary Computation.

[30]  M. N. Vrahatis,et al.  Particle swarm optimization method in multiobjective problems , 2002, SAC '02.

[31]  Maurice Clerc,et al.  The particle swarm - explosion, stability, and convergence in a multidimensional complex space , 2002, IEEE Trans. Evol. Comput..

[32]  Russell C. Eberhart,et al.  Multiobjective optimization using dynamic neighborhood particle swarm optimization , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[33]  C.A. Coello Coello,et al.  MOPSO: a proposal for multiple objective particle swarm optimization , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[34]  Jonathan E. Fieldsend,et al.  A Multi-Objective Algorithm based upon Particle Swarm Optimisation, an Efficient Data Structure and , 2002 .

[35]  H. Abbass The self-adaptive Pareto differential evolution algorithm , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[36]  Frans van den Bergh,et al.  An analysis of particle swarm optimizers , 2002 .

[37]  Jonathan Timmis,et al.  Artificial immune systems - a new computational intelligence paradigm , 2002 .

[38]  Xiaohua Liu,et al.  Solving multi objective optimization problems using particle swarm optimization , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[39]  Russell C. Eberhart,et al.  Particle swarm with extended memory for multiobjective optimization , 2003, Proceedings of the 2003 IEEE Swarm Intelligence Symposium. SIS'03 (Cat. No.03EX706).

[40]  A. Stacey,et al.  Particle swarm optimization with mutation , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[41]  Konstantinos E. Parsopoulos,et al.  MULTIOBJECTIVE OPTIMIZATION USING PARALLEL VECTOR EVALUATED PARTICLE SWARM OPTIMIZATION , 2003 .

[42]  Tian Hou Seow,et al.  Particle swarm inspired evolutionary algorithm (PS-EA) for multiobjective optimization problems , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[43]  Carlos A. Coello Coello,et al.  The Micro Genetic Algorithm 2: Towards Online Adaptation in Evolutionary Multiobjective Optimization , 2003, EMO.

[44]  Xiaodong Li,et al.  A Non-dominated Sorting Particle Swarm Optimizer for Multiobjective Optimization , 2003, GECCO.

[45]  M.N. Vrahatis,et al.  Particle swarm optimizers for Pareto optimization with enhanced archiving techniques , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[46]  Jürgen Teich,et al.  Strategies for finding good local guides in multi-objective particle swarm optimization (MOPSO) , 2003, Proceedings of the 2003 IEEE Swarm Intelligence Symposium. SIS'03 (Cat. No.03EX706).

[47]  Richard Balling,et al.  The Maximin Fitness Function; Multi-objective City and Regional Planning , 2003, EMO.

[48]  Petros Koumoutsakos,et al.  Self-Adaptation for Multi-objective Evolutionary Algorithms , 2003, EMO.

[49]  Yongling Zheng,et al.  On the convergence analysis and parameter selection in particle swarm optimization , 2003, Proceedings of the 2003 International Conference on Machine Learning and Cybernetics (IEEE Cat. No.03EX693).

[50]  Martin Middendorf,et al.  A hierarchical particle swarm optimizer , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[51]  Russell C. Eberhart,et al.  Swarm intelligence for permutation optimization: a case study of n-queens problem , 2003, Proceedings of the 2003 IEEE Swarm Intelligence Symposium. SIS'03 (Cat. No.03EX706).

[52]  Derek A. Linkens,et al.  Adaptive Weighted Particle Swarm Optimisation for Multi-objective Optimal Design of Alloy Steels , 2004, PPSN.

[53]  Jürgen Teich,et al.  Covering Pareto-optimal fronts by subswarms in multi-objective particle swarm optimization , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[54]  Hung-Tat Tsui,et al.  Autonomous agent response learning by a multi-species particle swarm optimization , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[55]  Carlos A. Coello Coello,et al.  Using Clustering Techniques to Improve the Performance of a Multi-objective Particle Swarm Optimizer , 2004, GECCO.

[56]  Carlos A. Coello Coello,et al.  Handling multiple objectives with particle swarm optimization , 2004, IEEE Transactions on Evolutionary Computation.

[57]  Xiaodong Li,et al.  Better Spread and Convergence: Particle Swarm Multiobjective Optimization Using the Maximin Fitness Function , 2004, GECCO.

[58]  Jürgen Teich,et al.  Molecular force field parametrization using multi-objective evolutionary algorithms , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[59]  W. Renhart,et al.  Pareto optimality and particle swarm optimization , 2004, IEEE Transactions on Magnetics.

[60]  Daniel Merkle,et al.  A New Multi-objective Particle Swarm Optimization Algorithm Using Clustering Applied to Automated Docking , 2005, Hybrid Metaheuristics.

[61]  Shiyou Yang,et al.  A particle swarm optimization-based method for multiobjective design optimizations , 2005, IEEE Transactions on Magnetics.

[62]  Jonathan E. Fieldsend,et al.  A MOPSO Algorithm Based Exclusively on Pareto Dominance Concepts , 2005, EMO.

[63]  Joshua D. Knowles,et al.  Multiobjective Optimization on a Budget of 250 Evaluations , 2005, EMO.

[64]  Licheng Jiao,et al.  Intelligent particle swarm optimization in multiobjective optimization , 2005, Congress on Evolutionary Computation.

[65]  Prospero C. Naval,et al.  An effective use of crowding distance in multiobjective particle swarm optimization , 2005, GECCO '05.

[66]  Andries Petrus Engelbrecht,et al.  Fundamentals of Computational Swarm Intelligence , 2005 .

[67]  Jiao Li-cheng,et al.  Intelligent particle swarm optimization in multiobjective optimization , 2005, 2005 IEEE Congress on Evolutionary Computation.

[68]  Carlos A. Coello Coello,et al.  A proposal to use stripes to maintain diversity in a multi-objective particle swarm optimizer , 2005, Proceedings 2005 IEEE Swarm Intelligence Symposium, 2005. SIS 2005..

[69]  C. Coello,et al.  Improving PSO-based Multi-Objective Optimization using Crowding , Mutation and �-Dominance , 2005 .

[70]  Gregorio Toscano Pulido On the use of self-adaptation and elitism for multiobjetive particle swarm optimization , 2005 .

[71]  Zhao Bo,et al.  Multiple objective particle swarm optimization technique for economic load dispatch , 2005 .

[72]  J. Rowe,et al.  Particle SwarmOptimization andFitness Sharing tosolve Multi-Objective Optimization Problems , 2005 .

[73]  Mauro Birattari,et al.  Swarm Intelligence , 2012, Lecture Notes in Computer Science.

[74]  K. Schittkowski,et al.  NONLINEAR PROGRAMMING , 2022 .