Efficient Stacking on Protein Amide Fragments

The less polar π‐surface of protein amide groups is exposed in many receptor binding sites, either as part of the backbone or in Gln/Asn side chains. Using quantum chemical calculations and Protein Data Bank (PDB) searches on model systems, we investigate the energetics and geometric preferences for the stacking on amide groups of a large number of heteroarenes that are relevant to medicinal chemistry. From this study, we discern that the stacking energy of an aromatic ligand substituent can be improved by: 1) orienting the fragment dipole vector such that it is aligned in an antiparallel fashion with the dipole of the interacting protein amide group, 2) increasing its dipole moment, and 3) decreasing its π‐electron density. These guidelines should be helpful to more rationally exploit this interaction type in future structure‐based drug design.

[1]  F. Diederich,et al.  Molecular recognition at the active site of factor Xa: cation-π interactions, stacking on planar peptide surfaces, and replacement of structural water. , 2012, Chemistry.

[2]  Evan G. Buchanan,et al.  Competition between amide stacking and intramolecular H bonds in γ-peptide derivatives: controlling nearest-neighbor preferences. , 2011, The journal of physical chemistry. A.

[3]  K. Fennell,et al.  Use of structure-based design to discover a potent, selective, in vivo active phosphodiesterase 10A inhibitor lead series for the treatment of schizophrenia. , 2011, Journal of medicinal chemistry.

[4]  L. Salonen,et al.  Aromatische Ringe in chemischer und biologischer Erkennung: Energien und Strukturen , 2011 .

[5]  F. Diederich,et al.  Aromatic rings in chemical and biological recognition: energetics and structures. , 2011, Angewandte Chemie.

[6]  D. Banner,et al.  Systematische Untersuchung von Halogenbrücken in Protein‐Ligand‐ Wechselwirkungen , 2011 .

[7]  François Diederich,et al.  Systematic investigation of halogen bonding in protein-ligand interactions. , 2011, Angewandte Chemie.

[8]  J. Sanders Optimal pi-stacking interaction energies in parallel-displaced aryl/aryl dimers are predicted by the dimer heavy atom count. , 2010, The journal of physical chemistry. A.

[9]  B. Kuhn,et al.  A Medicinal Chemist’s Guide to Molecular Interactions , 2010, Journal of medicinal chemistry.

[10]  Isao Nakanishi,et al.  Amide–π interactions between formamide and benzene , 2009, J. Comput. Chem..

[11]  Evan G. Buchanan,et al.  Intramolecular amide stacking and its competition with hydrogen bonding in a small foldamer. , 2009, Journal of the American Chemical Society.

[12]  Edward G Hohenstein,et al.  An assessment of theoretical methods for nonbonded interactions: comparison to complete basis set limit coupled-cluster potential energy curves for the benzene dimer, the methane dimer, benzene-methane, and benzene-H2S. , 2009, The journal of physical chemistry. A.

[13]  C. Sherrill,et al.  Effects of heteroatoms on aromatic pi-pi interactions: benzene-pyridine and pyridine dimer. , 2009, The journal of physical chemistry. A.

[14]  Steven E. Wheeler,et al.  Substituent effects in the benzene dimer are due to direct interactions of the substituents with the unsubstituted benzene. , 2008, Journal of the American Chemical Society.

[15]  Pavel Hobza,et al.  Theoretical Study on the Complexes of Benzene with Isoelectronic Nitrogen-Containing Heterocycles , 2008, Chemphyschem : a European journal of chemical physics and physical chemistry.

[16]  J. Vondrášek,et al.  Model of peptide bond-aromatic ring interaction: correlated ab initio quantum chemical study. , 2007, The journal of physical chemistry. B.

[17]  Dongwook Kim,et al.  Understanding of assembly phenomena by aromatic-aromatic interactions: benzene dimer and the substituted systems. , 2007, The journal of physical chemistry. A.

[18]  Seiji Tsuzuki,et al.  Magnitude and Physical Origin of Intermolecular Interactions of Aromatic Molecules: Recent Progress of Computational Studies , 2006 .

[19]  Martin Stahl,et al.  The environment of amide groups in protein–ligand complexes: H-bonds and beyond , 2006, Journal of molecular modeling.

[20]  C. David Sherrill,et al.  Substituent Effects in π−π Interactions: Sandwich and T-Shaped Configurations , 2004 .

[21]  François Diederich,et al.  Wechselwirkungen mit aromatischen Ringen in chemischen und biologischen Erkennungsprozessen , 2003 .

[22]  Andrew M. Davis,et al.  Anwendung und Grenzen kristallographischer Daten im strukturbezogenen Liganden- und Wirkstoff-Design , 2003 .

[23]  Gerard J Kleywegt,et al.  Application and limitations of X-ray crystallographic data in structure-based ligand and drug design. , 2003, Angewandte Chemie.

[24]  S. Grimme Improved second-order Møller–Plesset perturbation theory by separate scaling of parallel- and antiparallel-spin pair correlation energies , 2003 .

[25]  F. Diederich,et al.  Interactions with aromatic rings in chemical and biological recognition. , 2003, Angewandte Chemie.

[26]  Robin Taylor,et al.  New software for searching the Cambridge Structural Database and visualizing crystal structures. , 2002, Acta crystallographica. Section B, Structural science.

[27]  D. Weaver,et al.  Characterization of Aromatic−Amide(Side-Chain) Interactions in Proteins through Systematic ab Initio Calculations and Data Mining Analyses , 2000 .

[28]  J. Olsen,et al.  The accuracy of molecular dipole moments in standard electronic structure calculations , 2000 .

[29]  G. McGaughey,et al.  pi-Stacking interactions. Alive and well in proteins. , 1998, The Journal of biological chemistry.

[30]  J. Tomasi,et al.  Ab initio study of solvated molecules: A new implementation of the polarizable continuum model , 1996 .

[31]  Paul R. Gerber,et al.  MAB, a generally applicable molecular force field for structure modelling in medicinal chemistry , 1995, J. Comput. Aided Mol. Des..

[32]  J. Warner,et al.  Aromatic-aromatic interactions in molecular recognition: a family of artificial receptors for thymine that shows both face-to-face and edge-to-face orientations , 1988 .

[33]  Peter Pulay,et al.  Orbital-invariant formulation and second-order gradient evaluation in Møller-Plesset perturbation theory , 1986 .

[34]  Peter Pulay,et al.  Localizability of dynamic electron correlation , 1983 .

[35]  S. F. Boys,et al.  The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors , 1970 .

[36]  R. Cole,et al.  Dielectric Properties of Alkyl Amides. I. Vapor Phase Dipole Moments and Polarization in Benzene Solution1 , 1964 .