Ontology-aware prediction from rules: A reconciliation-based approach

Our work is related to the general problem of constructing predictions for decision support issues. It relies on knowledge expressed by numerous rules with homogeneous structure, extracted from various scientific publications in a specific domain. We propose a predictive approach that takes two stages: a reconciliation stage which identifies groups of rules expressing a common experimental tendency and a prediction stage which generates new rules, using both descriptions coming from experimental conditions and groups of reconciled rules obtained in stage one. The method has been tested with a case study related to food science and it has been compared to a classical approach based on decision trees. The results are promising in terms of accuracy, completeness and error rate.

[1]  Fatiha Saïs,et al.  Reference Fusion and Flexible Querying , 2008, OTM Conferences.

[2]  Mathieu d'Aquin,et al.  Case-Based Reasoning Within Semantic Web Technologies , 2006, AIMSA.

[3]  Didier Dubois,et al.  On the use of aggregation operations in information fusion processes , 2004, Fuzzy Sets Syst..

[4]  Monique Thonnat,et al.  Ontology based complex object recognition , 2008, Image Vis. Comput..

[5]  M W Peck,et al.  Modelling the growth, survival and death of microorganisms in foods: the UK food micromodel approach. , 1994, International journal of food microbiology.

[6]  Agnar Aamodt,et al.  Case-Based Reasoning: Foundational Issues, Methodological Variations, and System Approaches , 1994, AI Commun..

[7]  Jayant Madhavan,et al.  Reference reconciliation in complex information spaces , 2005, SIGMOD '05.

[8]  Ivan P. Fellegi,et al.  A Theory for Record Linkage , 1969 .

[9]  Daisy Zhe Wang,et al.  Functional Dependency Generation and Applications in Pay-As-You-Go Data Integration Systems , 2009, WebDB.

[10]  Nicola Fanizzi,et al.  A Multi-relational Hierarchical Clustering Method for DatalogKnowledge Bases , 2008, ISMIS.

[11]  Agnar Aamodt,et al.  Knowledge-Intensive Case-Based Reasoning and Sustained Learning , 1990, ECAI.

[12]  W. Winkler Overview of Record Linkage and Current Research Directions , 2006 .

[13]  Phyllis Koton,et al.  Reasoning about Evidence in Causal Explanations , 1988, AAAI.

[14]  C. Tappert,et al.  A Survey of Binary Similarity and Distance Measures , 2010 .

[15]  Michel Manago,et al.  Advances in Case-Based Reasoning: Second European Workshop, EWCBR-94, Chantilly, France, November 7 - 10, 1994. Selected Papers , 1995 .

[16]  Sébastien Konieczny,et al.  On the merging of Dung's argumentation systems , 2007, Artif. Intell..

[17]  Marie-Jeanne Lesot Similarity , typicality and fuzzy prototypes for numerical data , 2005 .

[18]  Sébastien Destercke,et al.  An iterative approach to build relevant ontology-aware data-driven models , 2012, Inf. Sci..

[19]  Gee Wah Ng,et al.  Adaptive Fuzzy Rule-Based Classification System Integrating Both Expert Knowledge and Data , 2012, 2012 IEEE 24th International Conference on Tools with Artificial Intelligence.

[20]  Rallou Thomopoulos,et al.  Virtual Grain: a Data Warehouse for Mesh Grid Representation of Cereal Grain Properties , 2006 .

[21]  Enric Plaza,et al.  Case-Based Planning for Medical Diagnosis , 1993, ISMIS.

[22]  Janet L. Kolodner,et al.  Case-Based Reasoning , 1988, IJCAI 1989.

[23]  Nathalie Pernelle,et al.  Combining a Logical and a Numerical Method for Data Reconciliation , 2009, J. Data Semant..

[24]  M. Huynen,et al.  Prediction of protein function and pathways in the genome era , 2004, Cellular and Molecular Life Sciences CMLS.

[25]  Ross Ihaka,et al.  Gentleman R: R: A language for data analysis and graphics , 1996 .

[26]  Ollivier Haemmerlé,et al.  The MIEL system: Uniform interrogation of structured and weakly-structured imprecise data , 2007, Journal of Intelligent Information Systems.

[28]  A. Moser,et al.  Modelling of growth of , 1997 .

[29]  Marie-Jeanne Lesot,et al.  Similarity measures for binary and numerical data: a survey , 2008, Int. J. Knowl. Eng. Soft Data Paradigms.

[30]  Andreas Hotho,et al.  Semantic Web Mining: State of the art and future directions , 2006, J. Web Semant..

[31]  Pradeep Ravikumar,et al.  A Comparison of String Distance Metrics for Name-Matching Tasks , 2003, IIWeb.

[32]  Dekang Lin,et al.  An Information-Theoretic Definition of Similarity , 1998, ICML.

[33]  Ollivier Haemmerlé,et al.  Conceptual Graphs as Cooperative Formalism to Build and Validate a Domain Expertise , 2007, ICCS.

[34]  Martha Palmer,et al.  Verb Semantics and Lexical Selection , 1994, ACL.

[35]  Marc Ehrig,et al.  Similarity for Ontologies - A Comprehensive Framework , 2005, ECIS.

[36]  Andreas Hotho,et al.  Content Aggregation on Knowledge Bases using Graph Clustering , 2006, LWA.

[37]  Renée J. Miller,et al.  A framework for semantic link discovery over relational data , 2009, CIKM.

[38]  Leo Breiman,et al.  Classification and Regression Trees , 1984 .

[39]  E. D. Giorgi Selected Papers , 2006 .

[40]  Nathalie Pernelle,et al.  An automatic key discovery approach for data linking , 2013, J. Web Semant..

[41]  Hector J. Levesque Incompleteness in Knowledge Bases , 1980, Workshop on Data Abstraction, Databases and Conceptual Modelling.

[42]  Linda S. Young Application of Baking Knowledge in Software Systems , 2007 .

[43]  Ollivier Haemmerlé,et al.  Fuzzy querying of incomplete, imprecise, and heterogeneously structured data in the relational model using ontologies and rules , 2005, IEEE Transactions on Fuzzy Systems.

[44]  Vasant Honavar,et al.  Ontology-Driven Induction of Decision Trees at Multiple Levels of Abstraction , 2002, SARA.

[45]  Michel Manago,et al.  Advances in Case-Based Reasoning , 1994, Lecture Notes in Computer Science.

[46]  Ollivier Haemmerlé,et al.  Towards Flexible Querying of XML Imprecise Data in a Dataware House Opened on the Web , 2004, FQAS.

[47]  Nathalie Pernelle,et al.  L2R: A Logical Method for Reference Reconciliation , 2007, AAAI.

[48]  Guy Della Valle,et al.  Qualitative modelling of a multi-step process: The case of French breadmaking , 2009, Expert Syst. Appl..

[49]  Christopher K. Riesbeck,et al.  Inside Case-Based Reasoning , 1989 .

[50]  Pei-Chann Chang,et al.  A hybrid model combining case-based reasoning and fuzzy decision tree for medical data classification , 2011, Appl. Soft Comput..

[51]  Agnar Aamodt,et al.  Knowledge-Intensive Case-Based Reasoning in CREEK , 2004, ECCBR.