A Partial Ordering of Knots Through Diagrammatic Unknotting
暂无分享,去创建一个
[1] Yasutaka Nakanishi. A Note on Unknotting Number , 1981 .
[2] C. H. Dowker,et al. Classification of knot projections , 1983 .
[3] G. Burde. Über das geschlecht und die faserbarkeit von montesinos-knoten , 1984 .
[4] 村上 斉,et al. Two-bridge knots with unknotting number one , 1985 .
[5] M. Thistlethwaite,et al. Some links with non-trivial polynomials and their crossing-numbers , 1988 .
[6] M. Thistlethwaite,et al. The Tait flyping conjecture , 1991 .
[7] M. Thistlethwaite,et al. The classification of alternating links , 1993 .
[8] P. Kronheimer,et al. Gauge theory for embedded surfaces, II , 1993 .
[9] Quasipositivity as an obstruction to sliceness , 1993, math/9307233.
[10] James A. Bernhard. UNKNOTTING NUMBERS AND MINIMAL KNOT DIAGRAMS , 1994 .
[11] Ronald C. Read,et al. The knot book: An elementary introduction to the mathematical theory of knots , 1997, Complex..
[12] J. Weeks,et al. The first 1,701,936 knots , 1998 .
[13] Ichiro Torisu. The determination of the pairs of two-bridge knots or links with Gordian distance one , 1998 .
[14] P. Traczyk. A criterion for signed unknotting number , 1999 .
[15] Alexander Stoimenow,et al. On the unknotting number of minimal diagrams , 2003, Math. Comput..
[16] D. Rolfsen. Knots and Links , 2003 .
[17] A. Stoimenow. On unknotting numbers and knot trivadjacency , 2004 .
[18] Entwicklung Der Schulen,et al. HAMBURG , 2006, Camden Fifth Series.
[19] A. Flammini,et al. Natural classification of knots , 2007, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[20] 村杉 邦男. Knot theory & its applications , 2008 .