Representation of discrete time LTI/LTV systems using general fuzzy automata

This paper shows that there is a close relationship between two different kinds of dynamic system representations. On the one hand, state-space realizations are often used in system theory to represent the dynamics of the system and specify the relations among states of a system and time. On the other hand, in language and automata theory and many other computer science related problems, automata and discrete event representation is used to clearly describe event-driven system dynamics. There are also many evidences that show how these two representations are closely related and can be used interchangeably. One of the subjects in which this close relationship can clearly be seen is discretization of continuous time systems. In this paper these two representations will be studied for their similarities and a new perspective will be given.

[1]  Michael A. Arbib,et al.  From Automata Theory to Brain Theory , 1975, Int. J. Man Mach. Stud..

[2]  Stefan C. Kremer,et al.  New directions in fuzzy automata , 2005, Int. J. Approx. Reason..

[3]  John von Neumann,et al.  Theory Of Self Reproducing Automata , 1967 .

[4]  M. Doostfatemeh,et al.  Developing a new fuzzy controller , 2005, NAFIPS 2005 - 2005 Annual Meeting of the North American Fuzzy Information Processing Society.

[5]  Eugene S. Santos,et al.  Maximin Automata , 1968, Inf. Control..

[6]  György E. Révész Introduction to formal languages , 1983 .

[7]  Stefan C. Kremer,et al.  General Fuzzy Automata, New Efficient Acceptors for Fuzzy Languages , 2006, 2006 IEEE International Conference on Fuzzy Systems.

[8]  Feng Lin,et al.  Modeling and control of fuzzy discrete event systems , 2002, IEEE Trans. Syst. Man Cybern. Part B.

[9]  George J. Klir,et al.  Fuzzy sets and fuzzy logic - theory and applications , 1995 .

[10]  J. Mordeson,et al.  Fuzzy Automata and Languages: Theory and Applications , 2002 .

[11]  守屋 悦朗,et al.  J.E.Hopcroft, J.D. Ullman 著, "Introduction to Automata Theory, Languages, and Computation", Addison-Wesley, A5変形版, X+418, \6,670, 1979 , 1980 .

[12]  M. Doostfatemeh,et al.  Representing generalized fuzzy automata in recurrent neural networks , 2004, Canadian Conference on Electrical and Computer Engineering 2004 (IEEE Cat. No.04CH37513).

[13]  B. Gaines,et al.  THE LOGIC OF AUTOMATA , 1975 .

[14]  Eugene S. Santos Fuzzy automata and languages , 1976, Inf. Sci..

[15]  Arthur W. Burks,et al.  Logic, Biology and Automata - Some Historical Reflections , 1975, Int. J. Man Mach. Stud..

[16]  M. W. Shields An Introduction to Automata Theory , 1988 .

[17]  Jeffrey D. Ullman,et al.  Introduction to Automata Theory, Languages and Computation , 1979 .

[18]  Karvel K. Thornber,et al.  Equivalence in knowledge representation: automata, recurrent neural networks, and dynamical fuzzy systems , 1999, Proc. IEEE.

[19]  Michael, G. Thomason,et al.  Deterministic Acceptors of Regular Fuzzy Languages , 1974, IEEE Trans. Syst. Man Cybern..

[20]  Stefan C. Kremer,et al.  Biological Sequence Prediction using General Fuzzy Automata , 2005, 2005 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology.

[21]  W. Pitts,et al.  A Logical Calculus of the Ideas Immanent in Nervous Activity (1943) , 2021, Ideas That Created the Future.

[22]  Peter Linz,et al.  An Introduction to Formal Languages and Automata , 1997 .

[23]  Kenneth L. Artis Design for a Brain , 1961 .

[24]  Meng Joo Er,et al.  Intelligent selective packet discarding using general fuzzy automata , 2008, 2008 IEEE International Conference on Systems, Man and Cybernetics.

[25]  Siegfried Gottwald,et al.  Fuzzy Sets and Fuzzy Logic , 1993 .

[26]  A. Turing On Computable Numbers, with an Application to the Entscheidungsproblem. , 1937 .

[27]  George J. Klir,et al.  Fuzzy sets and fuzzy logic , 1995 .

[28]  Karvel K. Thornber,et al.  Fuzzy finite-state automata can be deterministically encoded into recurrent neural networks , 1998, IEEE Trans. Fuzzy Syst..