Simulating carbon and water flows and growth in a Mediterranean evergreen Quercus ilex coppice using the FOREST-BGC model

Abstract The process-based model FOREST-BGC calculates the flow of water, carbon and nitrogen through forest ecosystems. This model, originally developed for conifer species, has been adapted to a Mediterranean evergreen oak species: Quercus ilex . This application requires species specific parameters and modification of the model. First, we attempted to reproduce the level of drought stress experienced by the holm oak using a new relationship between soil water content and soil water potential. Second, to take into account the coppice structure of these ecosystems and the small stem diameter, we assumed that all the woody biomass was respiring. A 50-year simulation was performed for the homogeneous ecosystem at the Puechabon site, southern France. Water and carbon flows and biomass were examined for the last period, 1984–1993. Simulated values were compared with (1) measured soil water content and predawn leaf water potential from 1984 to 1986, (2) wood annual radial growth recorded since 1984, and (3) standing biomass estimated at the Puechabon site. The simulated predawn leaf water potential decreased in summer and reached −3.9 MPa in 1985. For the 1984–1993 period, mean ecosystem transpiration was 363 mm per year for a leaf area index of 2.9. The mean annual gross primary production was 1354 g C m −2 soil. Simulated mean annual carbon allocated to aboveground wood was 85 g C m −2 soil. In 1993, the simulated aboveground biomass of the ecosystem was 3275 g C m −2 soil for wood and 252 g C m −2 soil for leaves. These simulation results are in agreement with field measurements on the Puechabon site and on similar ecosystems in the Mediterranean region. They reproduced the intra-annual effects of the drought stress on holm oak. These results show that the FOREST-BGC model can be used for modeling the function and growth of Mediterranean oak coppice.

[1]  A. Escudero,et al.  The efficiency of nitrogen retranslocation from leaf biomass in Quercus ilex ecosystems , 1992 .

[2]  M. Raupach,et al.  Maximum conductances for evaporation from global vegetation types , 1995 .

[3]  Serge Rambal,et al.  Co-occurrence of trees with different leaf habit: A functional approach on Mediterranean oaks , 1998 .

[4]  R. B. Jackson,et al.  Methods in Ecosystem Science , 2000, Springer New York.

[5]  S. Rambal Hierarchy and Productivity of Mediterranean-Type Ecosystems , 2001 .

[6]  S. Running,et al.  Generalization of a forest ecosystem process model for other biomes, Biome-BGC, and an application for global-scale models. Scaling processes between leaf and landscape levels , 1993 .

[7]  A. Merzouki Les effets d'une coupe à blanc sur l'activité biologique d'un sol fersiallitique méditerranéen , 1986 .

[8]  S. Running,et al.  A general model of forest ecosystem processes for regional applications I. Hydrologic balance, canopy gas exchange and primary production processes , 1988 .

[9]  F. Rodà,et al.  Ecology of Mediterranean Evergreen Oak Forests , 1999, Ecological Studies.

[10]  Gaylon S. Campbell,et al.  A SIMPLE METHOD FOR DETERMINING UNSATURATED CONDUCTIVITY FROM MOISTURE RETENTION DATA , 1974 .

[11]  S. Rambal,et al.  Local variations of ecosystem functions in Mediterranean evergreen oak woodland , 1996 .

[12]  H. H. Laar,et al.  Products, requirements and efficiency of biosynthesis: a quantitative approach. , 1974, Journal of theoretical biology.

[13]  H. Mooney,et al.  Convergence Versus Nonconvergence in Mediterranean-Climate Ecosystems , 1978 .

[14]  J. Canadell,et al.  Root biomass of Quercusilex in a montane Mediterranean forest , 1991 .

[15]  Juli G. Pausas,et al.  Mediterranean vegetation dynamics: modelling problems and functional types , 2004, Plant Ecology.

[16]  R. Loisel,et al.  LE CHÊNE VERT EN RÉGION MÉDITERRANÉENNE , 1980 .

[17]  W. Oechel,et al.  Carbon Allocation and Utilization , 1981 .

[18]  Walter C. Oechel,et al.  Global Change and Mediterranean-Type Ecosystems , 1995, Ecological Studies.

[19]  C. Floret,et al.  Organisation de la structure, de la biomasse et de la minéralomasse d'un taillis ouvert de chêne vert (Quercus ilex L.) , 1989 .

[20]  F. Romane,et al.  Quercus ilex L. ecosystems: function, dynamics and management , 1992, Advances in vegetation science.

[21]  J. Houghton,et al.  Climate change : the IPCC scientific assessment , 1990 .

[22]  J. Goudriaan Biosphere Structure, Carbon Sequestering Potential and the Atmospheric 14C Carbon Record , 1992 .

[23]  M. Williams,et al.  Net primary production of forests: a constant fraction of gross primary production? , 1998, Tree physiology.

[24]  S. Rambal,et al.  Water balance and pattern of root water uptake by a Quercus coccifera L. evergreen srub , 1984, Oecologia.

[25]  W. Lauenroth Methods of Estimating Belowground Net Primary Production , 2000 .

[26]  S. Rambal,et al.  Water Balance of Mediterranean Ecosystems Under a Changing Climate , 1995 .

[27]  S. Rambal,et al.  Retrieving leaf conductances from sap flows in a mixed Mediterranean woodland: a scaling exercise , 1998 .

[28]  J. Etherington,et al.  Physiological Plant Ecology. , 1977 .

[29]  H. Mooney,et al.  CONVERGENT EVOLUTION OF MEDITERRANEAN‐CLIMATE EVERGREEN SCLEROPHYLL SHRUBS , 1970, Evolution; international journal of organic evolution.

[30]  J. Cortez,et al.  Decomposition of mediterranean leaf litters: A microcosm experiment investigating relationships between decomposition rates and litter quality , 1996 .

[31]  Claire Damesin Relations hydriques, photosynthese et efficacite d'utilisation de l'eau chez deux chenes mediterraneens caduc et sempervirent cooccurrents , 1996 .

[32]  R. Bacilieri,et al.  Germination and regeneration mechanisms in Mediterranean degenerate forests. , 1993 .

[33]  Structure, biomass and production of a resprouted holm-oak (Quercus ilex L.) forest in NE Spain , 1992 .

[34]  S. Running,et al.  Simulating vegetational and hydrologic responses to natural climatic variation and GCM-predicted climate change in a semi-arid ecosystem in Washington, U.S.A. , 1996 .

[35]  J. Aber,et al.  A generalized, lumped-parameter model of photosynthesis, evapotranspiration and net primary production in temperate and boreal forest ecosystems , 1992, Oecologia.

[36]  J. Kummerow,et al.  Biomass, Phenology, and Growth , 1981 .

[37]  J. Aber,et al.  A strategy for the regional analysis of the effects of physical and chemical climate change on biogeochemical cycles in northeastern (U.S.) forests , 1993 .

[38]  S. Rambal The differential role of mechanisms for drought resistance in a Mediterranean evergreen shrub: a simulation approach , 1993 .

[39]  M. Lillis,et al.  Gas exchange and resource-use patterns along a Mediterranean successional gradient , 1993 .

[40]  S. Running,et al.  Ecohydrological changes in the Murray-Darling Basin. III: A simulation of regional hydrological changes , 1993 .

[41]  Juan Bellot,et al.  GOTILWA: An Integrated Model of Water Dynamics and Forest Growth , 1999 .

[42]  J. Kummerow,et al.  Root biomass, root distribution and the fine-root growth dynamics of Quercus coccifera L. in the garrigue of southern France , 1990, Vegetatio.

[43]  C. Passialis,et al.  Characteristics and technological properties of the wood of mediterranean evergreen hardwoods. , 1995 .

[44]  D. W. Goodall,et al.  Mediterranean-type shrublands , 2004, Vegetatio.

[45]  F. E. Egler Ecosystems of the World , 1960 .

[46]  I. S. Regina,et al.  Biomass, nutrient content, litterfall and nutrient return to the soil in Mediterranean oak forests , 1999 .

[47]  Richard H. Waring,et al.  Forest Ecosystems: Analysis at Multiple Scales , 1985 .

[48]  R. Valentini,et al.  An experimental test of the eddy correlation technique over a Mediterranean macchia canopy , 1991 .

[49]  J. Terradas HOLM OAK AND HOLM OAK FORESTS : AN INTRODUCTION , 1999 .

[50]  S. Running,et al.  FOREST-BGC, A general model of forest ecosystem processes for regional applications. II. Dynamic carbon allocation and nitrogen budgets. , 1991, Tree physiology.

[51]  J. Tenhunen,et al.  Water relations, gas exchange, and growth of resprouts and mature plant shoots of Arbutus unedo L. and Quercus ilex L. , 1994, Oecologia.

[52]  S. Running,et al.  8 – Generalization of a Forest Ecosystem Process Model for Other Biomes, BIOME-BGC, and an Application for Global-Scale Models , 1993 .

[53]  S. Rambal,et al.  Optimization of carbon gain in canopies of mediterranean evergreen oaks , 1996 .

[54]  P. Curran,et al.  Environmental Remote Sensing From Regional to Global Scales , 1995 .

[55]  W. Oechel,et al.  Plant Response to Stress , 1987, NATO ASI Series.

[56]  Terry V. Callaghan,et al.  Effects on Ecosystems , 1992, Encyclopedia of Food and Agricultural Ethics.

[57]  J. Merino The costs of growing and maintaining leaves of mediterranean plants , 1987 .

[58]  M. Lillis,et al.  Comparative phenology and growth in different species of the Mediterranean maquis of central Italy , 1992, Vegetatio.

[59]  P. Miller Resource Use by Chaparral and Matorral , 1981, Ecological Studies.

[60]  F. E. Derfoufi Gestion et dynamique des nutrients dans des taillis de chêne vert agés et très jeunes , 1986 .

[61]  C. Werner,et al.  Two different strategies of Mediterranean macchia plants to avoid photoinhibitory damage by excessive radiation levels during summer drought , 1999 .

[62]  M. Tretiach Photosynthesis and transpiration of evergreen Mediterranean and deciduous trees in an ecotone during a growing season , 1993 .

[63]  Michael Battaglia,et al.  Process-based forest productivity models and their application in forest management , 1998 .

[64]  T. Persson Structure and Function of Northern Coniferous Forests-an Ecosystem Study. , 1982 .

[65]  P. Miller Similarities and Limitations of Resource Utilization in Mediterranean Type Ecosystems , 1981 .

[66]  E. Schulze,et al.  Relationships among Maximum Stomatal Conductance, Ecosystem Surface Conductance, Carbon Assimilation Rate, and Plant Nitrogen Nutrition: A Global Ecology Scaling Exercise , 1994 .

[67]  J. Tenhunen,et al.  Site-specific water relations and stomatal response of Quercus ilex in a Mediterranean watershed. , 1994, Tree physiology.

[68]  C. Field,et al.  A reanalysis using improved leaf models and a new canopy integration scheme , 1992 .

[69]  M. Rapp,et al.  Productivity and nutrient uptake in a holm oak (Quercus ilex L.) stand and during regeneration after clearcut , 1992, Vegetatio.

[70]  F. di Castri,et al.  Ecosystems of the world [Vol.] 11. Mediterranean-type shrublands. , 1981 .

[71]  John Tenhunen,et al.  Simulations of canopy net photosynthesis and transpiration in Quercus ilex L. under the influence of seasonal drought , 1996 .

[72]  Mitchell,et al.  Interspecific and environmentally induced variation in foliar dark respiration among eighteen southeastern deciduous tree species. , 1999, Tree physiology.

[73]  Gordon B. Bonan Do biophysics and physiology matter in ecosystem models? , 1993 .

[74]  M. Maistre,et al.  The holm oak (Quercus ilex L.) radial growth facing the rainfall unpredictability. An example in Southern France. , 1996 .

[75]  W. Parton,et al.  Analysis of factors controlling soil organic matter levels in Great Plains grasslands , 1987 .

[76]  A. Martin,et al.  Seasonal water potential changes and proline accumulation in mediterranean shrubland species , 1994, Vegetatio.

[77]  Ecology of vegetative regeneration after coppicing in macchia stands in central Italy , 1992 .