Non-Euclidean statistics for covariance matrices, with applications to diffusion tensor imaging

The statistical analysis of covariance matrices occurs in m any important applications, e.g. in diffusion tensor imaging or longitudinal data analysis. We consider the situation where it is of interest to estimate an average covariance matrix, describe its anisotropy and to carry out principal geodesic analysis of covariance matrices. In medical image analysis a particular type of covariance matrix arises in diffusion weighted imaging called a diffusion tensor. The diffusion tensor is a 3 × 3 covariance matrix which is estimated at each voxel in the brain, and is obtained by fittin g a physically-motivated model on measurements from the Fourier transform of the molecule displacement density (Basser et al., 1994). A strongly anisotropic diffusion tensor indicates a strong direction of white matter fibre tracts, and plots of measures of anisotropy are very useful t o neurologists. A measure that is very commonly used in diffusion tensor imaging is Fractional Anisotropy

[1]  M. Fréchet Les éléments aléatoires de nature quelconque dans un espace distancié , 1948 .

[2]  N. L. Johnson,et al.  Multivariate Analysis , 1958, Nature.

[3]  J. Gower Generalized procrustes analysis , 1975 .

[4]  H. Karcher Riemannian center of mass and mollifier smoothing , 1977 .

[5]  D. Kendall SHAPE MANIFOLDS, PROCRUSTEAN METRICS, AND COMPLEX PROJECTIVE SPACES , 1984 .

[6]  F. Bookstein Size and Shape Spaces for Landmark Data in Two Dimensions , 1986 .

[7]  D. Kendall A Survey of the Statistical Theory of Shape , 1989 .

[8]  Kanti V. Mardia,et al.  [A Survey of the Statistical Theory of Shape]: Comment: Some Contributions to Shape Analysis , 1989 .

[9]  W. Kendall Probability, Convexity, and Harmonic Maps with Small Image I: Uniqueness and Fine Existence , 1990 .

[10]  K. Mardia,et al.  The noncentral Bartlett decompositions and shape densities , 1992 .

[11]  The shapes of non-generic figures, and applications to collinearity testing , 1992, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[12]  C. Stein,et al.  Estimation with Quadratic Loss , 1992 .

[13]  P. Basser,et al.  Estimation of the effective self-diffusion tensor from the NMR spin echo. , 1994, Journal of magnetic resonance. Series B.

[14]  J. Kent The Complex Bingham Distribution and Shape Analysis , 1994 .

[15]  H. Le MEAN SIZE-AND-SHAPES AND MEAN SHAPES: A GEOMETRIC POINT OF VIEW , 1995 .

[16]  K. Mardia,et al.  Statistical Shape Analysis , 1998 .

[17]  Huiling Le,et al.  Multidimensional scaling of simplex shapes , 1999, Pattern Recognit..

[18]  Xavier Pennec,et al.  Probabilities and statistics on Riemannian manifolds: Basic tools for geometric measurements , 1999, NSIP.

[19]  T. K. Carne,et al.  Shape and Shape Theory , 1999 .

[20]  R. Kass,et al.  Shrinkage Estimators for Covariance Matrices , 2001, Biometrics.

[21]  H. Le,et al.  Locating Fréchet means with application to shape spaces , 2001, Advances in Applied Probability.

[22]  M. Pourahmadi,et al.  Bayesian analysis of covariance matrices and dynamic models for longitudinal data , 2002 .

[23]  Marc Alexa,et al.  Linear combination of transformations , 2002, ACM Trans. Graph..

[24]  D. Dunson,et al.  Random Effects Selection in Linear Mixed Models , 2003, Biometrics.

[25]  Zhizhou Wang,et al.  A constrained variational principle for direct estimation and smoothing of the diffusion tensor field from complex DWI , 2004, IEEE Transactions on Medical Imaging.

[26]  Xavier Pennec,et al.  A Riemannian Framework for Tensor Computing , 2005, International Journal of Computer Vision.

[27]  Daniel C Alexander,et al.  Multiple‐Fiber Reconstruction Algorithms for Diffusion MRI , 2005, Annals of the New York Academy of Sciences.

[28]  I. Dryden Statistical analysis on high-dimensional spheres and shape spaces , 2005, math/0508279.

[29]  R. Bhattacharya,et al.  Large sample theory of intrinsic and extrinsic sample means on manifolds--II , 2005, math/0507423.

[30]  Maher Moakher,et al.  A Differential Geometric Approach to the Geometric Mean of Symmetric Positive-Definite Matrices , 2005, SIAM J. Matrix Anal. Appl..

[31]  Ross T. Whitaker,et al.  Rician Noise Removal in Diffusion Tensor MRI , 2006, MICCAI.

[32]  Rachid Deriche,et al.  DTI segmentation by statistical surface evolution , 2006, IEEE Transactions on Medical Imaging.

[33]  Nicholas Ayache,et al.  Geometric Means in a Novel Vector Space Structure on Symmetric Positive-Definite Matrices , 2007, SIAM J. Matrix Anal. Appl..

[34]  P. Thomas Fletcher,et al.  Riemannian geometry for the statistical analysis of diffusion tensor data , 2007, Signal Process..

[35]  Ian L. Dryden,et al.  Pivotal Bootstrap Methods for k-Sample Problems in Directional Statistics and Shape Analysis , 2007 .

[36]  M. Pourahmadi Cholesky Decompositions and Estimation of A Covariance Matrix: Orthogonality of Variance--Correlation Parameters , 2007 .

[37]  Nicholas Ayache,et al.  Clinical DT-MRI estimation, smoothing and fiber tracking with Log-Euclidean metrics , 2006, 3rd IEEE International Symposium on Biomedical Imaging: Nano to Macro, 2006..

[38]  P. Bickel,et al.  Regularized estimation of large covariance matrices , 2008, 0803.1909.

[39]  Daniel Rueckert,et al.  Assessment of brain growth in early childhood using deformation-based morphometry , 2008, NeuroImage.

[40]  Li Bai,et al.  A Bayesian method with reparameterization for diffusion tensor imaging , 2008, SPIE Medical Imaging.

[41]  R. Dougherty,et al.  FALSE DISCOVERY RATE ANALYSIS OF BRAIN DIFFUSION DIRECTION MAPS. , 2008, The annals of applied statistics.

[42]  Philipp Mitteroecker,et al.  The Ontogenetic Trajectory of the Phenotypic Covariance Matrix, with Examples from Craniofacial Shape in Rats and Humans , 2009, Evolution; international journal of organic evolution.

[43]  I. Dryden,et al.  Shape curves and geodesic modelling , 2010 .