Enhancing Deep Learning with Visual Interactions

Deep learning has emerged as a powerful tool for feature-driven labeling of datasets. However, for it to be effective, it requires a large and finely labeled training dataset. Precisely labeling a large training dataset is expensive, time-consuming, and error prone. In this article, we present a visually driven deep-learning approach that starts with a coarsely labeled training dataset and iteratively refines the labeling through intuitive interactions that leverage the latent structures of the dataset. Our approach can be used to (a) alleviate the burden of intensive manual labeling that captures the fine nuances in a high-dimensional dataset by simple visual interactions, (b) replace a complicated (and therefore difficult to design) labeling algorithm by a simpler (but coarse) labeling algorithm supplemented by user interaction to refine the labeling, or (c) use low-dimensional features (such as the RGB colors) for coarse labeling and turn to higher-dimensional latent structures that are progressively revealed by deep learning, for fine labeling. We validate our approach through use cases on three high-dimensional datasets and a user study.

[1]  Ian H. Witten,et al.  Interactive machine learning: letting users build classifiers , 2002, Int. J. Hum. Comput. Stud..

[2]  P. Gamba,et al.  Exploiting spectral and spatial information for classifying hyperspectral data in urban areas , 2003, IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No.03CH37477).

[3]  Sunita Sarawagi,et al.  Discriminative Methods for Multi-labeled Classification , 2004, PAKDD.

[4]  Yoshua Bengio,et al.  Deconstructing the Ladder Network Architecture , 2015, ICML.

[5]  Gang Wang,et al.  Deep Learning-Based Classification of Hyperspectral Data , 2014, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[6]  Catherine Plaisant,et al.  Virtual memory palaces: immersion aids recall , 2018, Virtual Reality.

[7]  Geoffrey E. Hinton,et al.  Modeling Human Motion Using Binary Latent Variables , 2006, NIPS.

[8]  J. Kruskal Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis , 1964 .

[9]  Ratul Mahajan,et al.  CueT: human-guided fast and accurate network alarm triage , 2011, CHI.

[10]  Karl Aberer,et al.  Minimizing Efforts in Validating Crowd Answers , 2015, SIGMOD Conference.

[11]  T. D. Morley,et al.  Eigenvalues of the Laplacian of a graph , 1985 .

[12]  Eric Krokos,et al.  Deep-Learning-Assisted Volume Visualization , 2019, IEEE Transactions on Visualization and Computer Graphics.

[13]  Eric Krokos,et al.  Deep-learning-assisted visualization for live-cell images , 2017, 2017 IEEE International Conference on Image Processing (ICIP).

[14]  Dong-Hyun Lee,et al.  Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks , 2013 .

[15]  Grigorios Tsoumakas,et al.  Multi-Label Classification of Music into Emotions , 2008, ISMIR.

[16]  Geoffrey E. Hinton,et al.  Rectified Linear Units Improve Restricted Boltzmann Machines , 2010, ICML.

[17]  Sean C. Bendall,et al.  viSNE enables visualization of high dimensional single-cell data and reveals phenotypic heterogeneity of leukemia , 2013, Nature Biotechnology.

[18]  Yoshua Bengio,et al.  Why Does Unsupervised Pre-training Help Deep Learning? , 2010, AISTATS.

[19]  Jitendra Malik,et al.  Normalized cuts and image segmentation , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[20]  Jon Atli Benediktsson,et al.  Spectral–Spatial Hyperspectral Image Classification With Edge-Preserving Filtering , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[21]  Tapani Raiko,et al.  Semi-supervised Learning with Ladder Networks , 2015, NIPS.

[22]  Yehuda Koren,et al.  On Spectral Graph Drawing , 2003, COCOON.

[23]  Yann LeCun,et al.  Dimensionality Reduction by Learning an Invariant Mapping , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[24]  Geoffrey E. Hinton,et al.  Visualizing Data using t-SNE , 2008 .

[25]  Yuan Yu,et al.  TensorFlow: A system for large-scale machine learning , 2016, OSDI.

[26]  Leland Wilkinson,et al.  Transforming Scagnostics to Reveal Hidden Features , 2014, IEEE Transactions on Visualization and Computer Graphics.

[27]  Daniel A. Keim,et al.  Visual Interaction with Dimensionality Reduction: A Structured Literature Analysis , 2017, IEEE Transactions on Visualization and Computer Graphics.

[28]  Matthew D. Zeiler ADADELTA: An Adaptive Learning Rate Method , 2012, ArXiv.

[29]  Kevin Li,et al.  Faceted metadata for image search and browsing , 2003, CHI '03.

[30]  Axel J. Soto,et al.  Exploratory Visual Analysis and Interactive Pattern Extraction from Semi-Structured Data , 2015, ACM Trans. Interact. Intell. Syst..

[31]  Chris North,et al.  Semantic interaction for visual text analytics , 2012, CHI.

[32]  Thorsten Joachims,et al.  Text Categorization with Support Vector Machines: Learning with Many Relevant Features , 1998, ECML.

[33]  Helwig Hauser,et al.  Designing Progressive and Interactive Analytics Processes for High-Dimensional Data Analysis , 2017, IEEE Transactions on Visualization and Computer Graphics.

[34]  Joseph JáJá,et al.  Hierarchical Exploration of Volumes Using Multilevel Segmentation of the Intensity-Gradient Histograms , 2012, IEEE Transactions on Visualization and Computer Graphics.

[35]  Mikhail Belkin,et al.  Laplacian Eigenmaps for Dimensionality Reduction and Data Representation , 2003, Neural Computation.

[36]  S T Roweis,et al.  Nonlinear dimensionality reduction by locally linear embedding. , 2000, Science.

[37]  Jerry Alan Fails,et al.  Interactive machine learning , 2003, IUI '03.

[38]  Andrzej Cichocki,et al.  A New Learning Algorithm for Blind Signal Separation , 1995, NIPS.

[39]  Geoffrey E. Hinton,et al.  Reducing the Dimensionality of Data with Neural Networks , 2006, Science.

[40]  Martin Wattenberg,et al.  How to Use t-SNE Effectively , 2016 .

[41]  David A. Landgrebe,et al.  Signal Theory Methods in Multispectral Remote Sensing , 2003 .

[42]  Hanan Samet,et al.  A look into Twitter hashtag discovery and generation , 2014, LBSN '14.

[43]  Valerio Pascucci,et al.  Distortion‐Guided Structure‐Driven Interactive Exploration of High‐Dimensional Data , 2014, Comput. Graph. Forum.

[44]  Valerio Pascucci,et al.  Visual Exploration of High‐Dimensional Data through Subspace Analysis and Dynamic Projections , 2015, Comput. Graph. Forum.

[45]  Naonori Ueda,et al.  Parametric Mixture Models for Multi-Labeled Text , 2002, NIPS.