Markov type of Alexandrov spaces of nonnegative curvature

We prove that Alexandrov spaces $X$ of nonnegative curvature have Markov type 2 in the sense of Ball. As a corollary, any Lipschitz continuous map from a subset of $X$ into a 2-uniformly convex Banach space is extended as a Lipschitz continuous map on the entire space $X$.

[1]  M. Bridson,et al.  Metric Spaces of Non-Positive Curvature , 1999 .

[2]  Shin-ichi Ohta,et al.  Convexities of metric spaces , 2007 .

[3]  Urs Lang,et al.  Kirszbraun's Theorem and Metric Spaces of Bounded Curvature , 1997 .

[4]  U. Lang,et al.  Extensions of Lipschitz maps into Hadamard spaces , 2000 .

[5]  Assaf Naor,et al.  Metric cotype , 2005, SODA '06.

[6]  V. Milman,et al.  Asymptotic Theory Of Finite Dimensional Normed Spaces , 1986 .

[7]  Joram Lindenstrauss,et al.  Classical Banach spaces , 1973 .

[8]  K. Ball,et al.  Sharp uniform convexity and smoothness inequalities for trace norms , 1994 .

[9]  Nathan Linial,et al.  Girth and euclidean distortion , 2002, STOC '02.

[10]  Y. Peres,et al.  Markov chains in smooth Banach spaces and Gromov hyperbolic metric spaces , 2004, math/0410422.

[11]  Assaf Naor,et al.  Scaled Enflo type is equivalent to Rademacher type , 2005, Bulletin of the London Mathematical Society.

[12]  Jean Bourgain,et al.  On type of metric spaces , 1986 .

[13]  James R. Lee,et al.  Extending Lipschitz functions via random metric partitions , 2005 .

[14]  D. Burago,et al.  A Course in Metric Geometry , 2001 .

[15]  G. Schechtman,et al.  Remarks on non linear type and Pisier's inequality , 2002 .

[16]  P. Enflo On infinite-dimensional topological groups , 1978 .

[17]  Assaf Naor,et al.  Some applications of Ball’s extension theorem , 2006, Proceedings of the American Mathematical Society.

[18]  Nathan Linial,et al.  Girth and Euclidean distortion , 2002 .

[19]  Yu. D. Burago,et al.  A.D. Alexandrov spaces with curvature bounded below , 1992 .

[20]  Nathan Linial,et al.  On metric Ramsey-type phenomena , 2004 .

[21]  V. Schroeder,et al.  Hyperbolicity, CAT(−1)-spaces and the Ptolemy inequality , 2006, math/0605418.

[22]  Keith Ball,et al.  Markov chains, Riesz transforms and Lipschitz maps , 1992 .

[23]  Shin-Ichi Ohta,et al.  Regularity of Harmonic Functions in Cheeger-Type Sobolev Spaces , 2004 .

[24]  T. Laakso Ahlfors Q-regular spaces with arbitrary Q > 1 admitting weak Poincaré inequality , 2000 .