Comparing three methods for solving probabilistic optimal power flow

Abstract This paper compares three methods for solving probabilistic optimal power flow (P-OPF) problem: Zhao's point estimate method (PEM), Quasi Monte Carlo simulation (QMCS) and Latin hypercube sampling (LHS). With Nataf transformation, P-OPF problem is formulated as a multiple integral over standard normal space. By introducing a differential operator, a mathematical model is developed to compare the performance of QMCS and LHS. Furthermore, a simplified Gaussian mixture model (GMM) is presented to model distributions of P-OPF solutions. Testing on a modified 118-bus system, it is found LHS outperforms PEM and QMCS with a small sample size, but behaves comparably with QMCS for a large sample size. Compared to other statistic models, GMM shows a higher flexibility for data fitting.

[1]  Farrokh Aminifar,et al.  Unscented transformation-based probabilistic optimal power flow for modeling the effect of wind power generation , 2013 .

[2]  J. Aguado,et al.  Introduction to cumulant-based probabilistic optimal power flow (P-OPF) , 2005, IEEE Transactions on Power Systems.

[3]  D. Ernst,et al.  Contingency Filtering Techniques for Preventive Security-Constrained Optimal Power Flow , 2007, IEEE Transactions on Power Systems.

[4]  Yan-Gang Zhao,et al.  New Point Estimates for Probability Moments , 2000 .

[5]  L. Wehenkel,et al.  Experiments with the interior-point method for solving large scale optimal power flow problems , 2013 .

[6]  Shaohua Zhang,et al.  Analysis of Probabilistic Optimal Power Flow Taking Account of the Variation of Load Power , 2008, IEEE Transactions on Power Systems.

[7]  Bin Zou,et al.  Probabilistic load flow computation using univariate dimension reduction method , 2014 .

[8]  Shijie Cheng,et al.  Probabilistic Load Flow Method Based on Nataf Transformation and Latin Hypercube Sampling , 2013, IEEE Transactions on Sustainable Energy.

[9]  S. Shapiro,et al.  THE JOHNSON SYSTEM: SELECTION AND PARAMETER ESTIMATION , 1980 .

[10]  Qing Xiao Evaluating correlation coefficient for Nataf transformation , 2014 .

[11]  Mahmud Fotuhi-Firuzabad,et al.  Probabilistic Optimal Power Flow in Correlated Hybrid Wind–Photovoltaic Power Systems , 2014, IEEE Transactions on Smart Grid.

[12]  L. Wehenkel,et al.  A New Iterative Approach to the Corrective Security-Constrained Optimal Power Flow Problem , 2008, IEEE Transactions on Power Systems.

[13]  Bruce W. Schmeiser,et al.  An approximate method for generating symmetric random variables , 1972, CACM.

[14]  I. D. Hill,et al.  Fitting Johnson Curves by Moments , 1976 .

[15]  Qing Xiao,et al.  Solving Probabilistic Optimal Power Flow Problem Using Quasi Monte Carlo Method and Ninth-Order Polynomial Normal Transformation , 2014, IEEE Transactions on Power Systems.

[16]  Mohammad Mohammadi,et al.  A new approach of point estimate method for probabilistic load flow , 2013 .

[17]  Xue Li,et al.  Probabilistic optimal power flow for power systems considering wind uncertainty and load correlation , 2015, Neurocomputing.

[18]  C. Cañizares,et al.  Probabilistic Optimal Power Flow in Electricity Markets Based on a Two-Point Estimate Method , 2006, IEEE Transactions on Power Systems.

[19]  Qing Xiao Modeling Uncertainties in Power System by Generalized Lambda Distribution , 2014 .

[20]  Hui Zhang,et al.  Chance Constrained Programming for Optimal Power Flow Under Uncertainty , 2011, IEEE Transactions on Power Systems.

[21]  G. Valverde,et al.  Probabilistic load flow with non-Gaussian correlated random variables using Gaussian mixture models , 2012 .

[22]  M. Fotuhi-Firuzabad,et al.  Probabilistic Load Flow in Correlated Uncertain Environment Using Unscented Transformation , 2012, IEEE Transactions on Power Systems.

[23]  Athanassios N. Avramidis Constructing Discrete Unbounded Distributions with Gaussian-Copula Dependence and Given Rank Correlation , 2014, INFORMS J. Comput..

[24]  Julio Usaola,et al.  Probabilistic load flow with correlated wind power injections , 2010 .

[25]  Andrzej S. Nowak,et al.  Integration formulas to evaluate functions of random variables , 1988 .

[26]  A. Schellenberg,et al.  Enhancements to the Cumulant Method for Probabilistic Optimal Power Flow Studies , 2009, IEEE Transactions on Power Systems.

[27]  F. Jurado,et al.  Probabilistic load flow for photovoltaic distributed generation using the Cornish–Fisher expansion , 2012 .

[28]  J. Ramos,et al.  State-of-the-art, challenges, and future trends in security constrained optimal power flow , 2011 .

[29]  J M Morales,et al.  Simulating the Impact of Wind Production on Locational Marginal Prices , 2011, IEEE Transactions on Power Systems.

[30]  Pu Li,et al.  Probabilistic analysis for optimal power flow under uncertainty , 2010 .

[31]  Edward J. Dudewicz,et al.  Fitting the generalized lambda distribution to data: a method based on percentiles , 1999 .

[32]  L. Wehenkel,et al.  Cautious Operation Planning Under Uncertainties , 2012, IEEE Transactions on Power Systems.

[33]  Pierre L'Ecuyer,et al.  Efficient Correlation Matching for Fitting Discrete Multivariate Distributions with Arbitrary Marginals and Normal-Copula Dependence , 2009, INFORMS J. Comput..

[34]  F. Milano,et al.  An open source power system analysis toolbox , 2005, 2006 IEEE Power Engineering Society General Meeting.

[35]  J. Aguado,et al.  Cumulant-based probabilistic optimal power flow (P-OPF) with Gaussian and gamma distributions , 2005, IEEE Transactions on Power Systems.

[36]  Louis Wehenkel,et al.  A Generic Approach for Solving Nonlinear-Discrete Security-Constrained Optimal Power Flow Problems in Large-Scale Systems , 2014, IEEE Transactions on Power Systems.

[37]  R. Jabr,et al.  Statistical Representation of Distribution System Loads Using Gaussian Mixture Model , 2010 .

[38]  Xiukai Yuan,et al.  Nataf transformation based point estimate method , 2008 .

[39]  P. Jirutitijaroen,et al.  Latin Hypercube Sampling Techniques for Power Systems Reliability Analysis With Renewable Energy Sources , 2011, IEEE Transactions on Power Systems.

[40]  L. Wehenkel,et al.  Exploiting the Use of DC SCOPF Approximation to Improve Iterative AC SCOPF Algorithms , 2012, IEEE Transactions on Power Systems.