Memory-assisted quantum key distribution resilient against multiple-excitation effects

Memory-assisted quantum key distribution (MA-QKD) has recently been proposed as a technique to improve the rate-versus-distance behavior of QKD systems by using existing, or nearly-achievable, quantum technologies. The promise is that MA-QKD would require less demanding quantum memories than the ones needed for probabilistic quantum repeaters. Nevertheless, early investigations suggest that, in order to beat the conventional no-memory QKD schemes, the quantum memories used in the MA-QKD protocols must have high bandwidth-storage products and short interaction times. Among different types of quantum memories, ensemble-based memories offer some of the required specifications, but they typically suffer from multiple excitation effects. To avoid the latter issue, in this paper, we propose two new variants of MA-QKD both relying on single-photon sources (SPSs) for entangling purposes. One is based on known techniques for entanglement distribution in quantum repeaters. This scheme turns out to offer no advantage even if one uses ideal SPSs. By finding the root cause of the problem, we then propose another setup, which can outperform single no-QM setups even if we allow for some imperfections in our SPSs. For such a scheme, we compare the key rate for different types of ensemble-based memories and show that certain classes of atomic ensembles can improve the rate-versus-distance behavior.

[1]  Sebastian Zaske,et al.  Efficient frequency downconversion at the single photon level from the red spectral range to the telecommunications C-band. , 2011, Optics express.

[2]  Charles H. Bennett,et al.  Quantum cryptography without Bell's theorem. , 1992, Physical review letters.

[3]  Ilgaitis Prūsis,et al.  Nature of Photon , 2019 .

[4]  I. Sagnes,et al.  Bright solid-state sources of indistinguishable single photons , 2013, Nature Communications.

[5]  Koji Azuma,et al.  All-photonic intercity quantum key distribution , 2015, Nature Communications.

[6]  T. Ralph,et al.  Nondeterministic Noiseless Linear Amplification of Quantum Systems , 2009 .

[7]  Mohsen Razavi,et al.  Quantum key distribution over probabilistic quantum repeaters , 2010 .

[8]  Philippe Goldner,et al.  Coherent Spin Control at the Quantum Level in an Ensemble-Based Optical Memory. , 2015, Physical review letters.

[9]  D. Branning,et al.  Tailoring single-photon and multiphoton probabilities of a single-photon on-demand source , 2002, quant-ph/0205140.

[10]  Hui Liu,et al.  Measurement-Device-Independent Quantum Key Distribution Over a 404 km Optical Fiber. , 2016, Physical review letters.

[11]  Allan D. Boardman,et al.  Modern Problems in Condensed Matter Sciences , 1991 .

[12]  Ian A. Walmsley,et al.  A cavity-enhanced room-temperature broadband Raman memory , 2015, 2016 Conference on Lasers and Electro-Optics (CLEO).

[13]  J. Cirac,et al.  Long-distance quantum communication with atomic ensembles and linear optics , 2001, Nature.

[14]  R. Ricken,et al.  Spectral multiplexing for scalable quantum photonics using an atomic frequency comb quantum memory and feed-forward control. , 2013, Physical review letters.

[15]  Mohsen Razavi,et al.  Measurement-device-independent quantum key distribution with nitrogen vacancy centers in diamond , 2017 .

[16]  W Tittel,et al.  Heralded Single Photons Based on Spectral Multiplexing and Feed-Forward Control. , 2017, Physical review letters.

[17]  Rufus L. Cone,et al.  Rare-earth-doped materials for applications in quantum information storage and signal processing , 2011 .

[18]  D. Jaksch,et al.  Quantum memory in an optical lattice , 2010, 1007.4444.

[19]  Y. C. Sun,et al.  Rare Earth Materiais in Optical Storage and Data Processing Applications , 2005 .

[20]  Thomas Halfmann,et al.  Coherence time extension in Pr 3+ :Y2SiO5 by self-optimized magnetic fields and dynamical decoupling , 2014 .

[21]  Hermann Kampermann,et al.  Measurement-device-independent quantum key distribution with quantum memories , 2013, 1306.3095.

[22]  Christoph Simon,et al.  Long-Distance Entanglement Distribution with Single-Photon Sources , 2007, 0706.1924.

[23]  Bo Zhao,et al.  Operating Spin Echo in the Quantum Regime for an Atomic-Ensemble Quantum Memory. , 2015, Physical review letters.

[24]  R. Macfarlane,et al.  Spectroscopy of solids containing rare earth ions , 1987 .

[25]  H. de Riedmatten,et al.  Solid State Spin-Wave Quantum Memory for Time-Bin Qubits. , 2015, Physical review letters.

[26]  Mohsen Razavi Long-distance quantum communication with neutral atoms , 2005 .

[27]  Chun-Mei Zhang,et al.  Improved statistical fluctuation analysis for measurement-device-independent quantum key distribution , 2012 .

[28]  Vahid Sandoghdar,et al.  A single molecule as a high-fidelity photon gun for producing intensity-squeezed light , 2016, Nature Photonics.

[29]  M. Razavi,et al.  Long-distance quantum key distribution with imperfect devices , 2012, 1210.8042.

[30]  Joshua Nunn,et al.  Quantum memories: emerging applications and recent advances , 2015, Journal of modern optics.

[31]  Kenneth Goodenough,et al.  Parameter regimes for a single sequential quantum repeater , 2017, 1705.00043.

[32]  Wei Zhang,et al.  Raman quantum memory of photonic polarized entanglement , 2014, 1410.7101.

[33]  P. Senellart,et al.  High-performance semiconductor quantum-dot single-photon sources. , 2017, Nature nanotechnology.

[34]  F. Marsili,et al.  Detecting single infrared photons with 93% system efficiency , 2012, 1209.5774.

[35]  C R Phillips,et al.  Long-wavelength-pumped upconversion single-photon detector at 1550 nm: performance and noise analysis. , 2011, Optics express.

[36]  I. Sagnes,et al.  Near-optimal single-photon sources in the solid state , 2015, Nature Photonics.

[37]  Nicolas Gisin,et al.  Cavity-enhanced storage in an optical spin-wave memory , 2014, 1404.3489.

[38]  Kevin Barraclough,et al.  I and i , 2001, BMJ : British Medical Journal.

[39]  L. Banchi,et al.  Fundamental limits of repeaterless quantum communications , 2015, Nature Communications.

[40]  A. W. Sharpe,et al.  High speed single photon detection in the near-infrared , 2007, 0707.4307.

[41]  Zach DeVito,et al.  Opt , 2017 .

[42]  John C. Howell,et al.  Four-wave-mixing stopped light in hot atomic rubidium vapour , 2009 .

[43]  Jian-Wei Pan,et al.  An efficient quantum light–matter interface with sub-second lifetime , 2015, Nature Photonics.

[44]  S. Kröll,et al.  Efficient quantum memory using a weakly absorbing sample. , 2013, Physical review letters.

[45]  N. Gisin,et al.  Multimode quantum memory based on atomic frequency combs , 2008, 0805.4164.

[46]  Hoi-Kwong Lo,et al.  Efficient Quantum Key Distribution Scheme and a Proof of Its Unconditional Security , 2004, Journal of Cryptology.

[47]  Roger M. Macfarlane,et al.  Coherent Transient and Holeburning Spectroscopy of Rare Earth Ions in Solids , 1987 .

[48]  Manjin Zhong,et al.  Optically addressable nuclear spins in a solid with a six-hour coherence time , 2015, Nature.

[49]  D. Luong,et al.  Overcoming lossy channel bounds using a single quantum repeater node , 2015, Applied Physics B.

[50]  C. Simon,et al.  Rate-loss analysis of an efficient quantum repeater architecture , 2014, 1404.7183.

[51]  Christoph Simon,et al.  Practical quantum repeaters with parametric down-conversion sources , 2015, 1505.03470.

[52]  J. Meijer,et al.  Optical detection of a single rare-earth ion in a crystal , 2012, Nature Communications.

[53]  Rob Thew,et al.  Provably secure and practical quantum key distribution over 307 km of optical fibre , 2014, Nature Photonics.

[54]  Y. O. Dudin,et al.  Light storage on the time scale of a minute , 2013 .

[55]  I. Walmsley,et al.  Single-photon-level quantum memory at room temperature. , 2010, Physical review letters.

[56]  Mohsen Razavi,et al.  Long-Distance Trust-Free Quantum Key Distribution , 2014, IEEE Journal of Selected Topics in Quantum Electronics.

[57]  N. Gregersen,et al.  A highly efficient single-photon source based on a quantum dot in a photonic nanowire , 2010 .

[58]  T. Umeda,et al.  A room temperature single photon source in silicon carbide , 2013, CLEO: 2013.

[59]  dek,et al.  Parameter regimes for a single sequential quantum repeater , 2018 .

[60]  Dexter Kozen,et al.  New , 2020, MFPS.

[61]  Mohsen Razavi,et al.  Memory-Assisted Quantum Key Distribution with a Single Nitrogen Vacancy Center , 2017, 1708.06532.

[62]  H. de Riedmatten,et al.  Quantum correlations between single telecom photons and a multimode on-demand solid-state quantum memory , 2017, 2017 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC).

[63]  Fumihiro Kaneda,et al.  Time-multiplexed heralded single-photon source , 2015, 1507.06052.

[64]  Harald Giessen,et al.  Diamond nanophotonics , 2012, Beilstein journal of nanotechnology.

[65]  D. Englund,et al.  Solid-state single-photon emitters , 2016, Nature Photonics.

[66]  P. Michler,et al.  On-demand generation of indistinguishable polarization-entangled photon pairs , 2013, 1308.4257.

[67]  Shor,et al.  Simple proof of security of the BB84 quantum key distribution protocol , 2000, Physical review letters.

[68]  Nicolas Gisin,et al.  Quantum repeaters based on atomic ensembles and linear optics , 2009, 0906.2699.

[69]  Mohsen Razavi,et al.  Measurement-Device-Independent Quantum Key Distribution With Ensemble-Based Memories , 2015, IEEE Journal of Selected Topics in Quantum Electronics.

[70]  Haifeng Pan,et al.  High efficiency frequency upconversion of photons carrying orbital angular momentum for a quantum information interface. , 2015, Optics express.

[71]  N. Lutkenhaus,et al.  Quantum repeaters with imperfect memories: Cost and scalability , 2008, 0810.5334.

[72]  Nicolas Gisin,et al.  How far can one send a photon? , 2015, 1508.00351.