On periodic motions of an inclined impact pair

Abstract The dynamical behavior of an inclined impact pair is investigated by using the discrete maps theory of discontinuous dynamical systems. The mechanical model consists of a ball and a frame. The frame, in which there is an inclined slot, is harmonically excited, and the ball is constrained to move freely in the slot without friction. The analytical conditions for predicting the occurrence of period-1 motion of two impacts under N cycles are obtained, from which the corresponding results of the horizontal impact pair can be derived. Different from the horizontal impact pair, for any integer N, the symmetrical period-1 motions of two impact under N cycles do not appear for 0 e 1 , θ > 0 , and this result is more general than the previous work. For a better understanding of periodic motions, plots of mechanical model in relative coordinate of the ball are presented.

[1]  Albert C. J. Luo,et al.  Vibro-impact Dynamics , 2013 .

[2]  Anil K. Bajaj,et al.  On the dynamics and stability of an inclined impact pair , 1986 .

[3]  Albert C. J. Luo,et al.  An Unsymmetrical Motion in a Horizontal Impact Oscillator , 2002 .

[4]  Albert C. J. Luo,et al.  Period-doubling induced chaotic motion in the LR model of a horizontal impact oscillator , 2004 .

[5]  Bogusław Radziszewski,et al.  Dynamics of impacts with a table moving with piecewise constant velocity , 2009 .

[6]  C. N. Bapat,et al.  The general motion of an inclined impact damper with friction , 1995 .

[7]  N. Popplewell,et al.  Stable periodic motions of an impact-pair , 1983 .

[8]  H. I. Weber,et al.  Mathematical modeling and experimental investigation of an embedded vibro-impact system , 2011 .

[9]  C. Bapat Impact-pair under periodic excitation , 1988 .

[10]  Sami F. Masri,et al.  On the stability of the impact damper. , 1966 .

[11]  A. Luo,et al.  Switching Mechanism and Complex Motions in an Extended Fermi-Acceleration Oscillator , 2010 .

[12]  Friedrich Pfeiffer,et al.  Theoretical and experimental investigations of gear-rattling , 1991 .

[13]  F. R. E. Crossley,et al.  Multiple Impacts of a Ball Between Two Plates—Part 1: Some Experimental Observations , 1975 .

[14]  Van-Du Nguyen,et al.  Nonlinear dynamics of a new electro-vibro-impact system , 2011 .

[15]  A. Luo,et al.  Analytical Predication of Complex Motion of a Ball in a Periodically Shaken Horizontal Impact Pair , 2012 .

[16]  Ray P. S. Han,et al.  Chaotic motion of a horizontal impact pair , 1995 .

[17]  Seyed Mehdi Zahrai,et al.  Effect of impact damper on SDOF system vibrations under harmonic and impulsive excitations , 2009 .

[18]  P. J. Holmes The dynamics of repeated impacts with a sinusoidally vibrating table , 1982 .

[19]  Albert C. J. Luo,et al.  The dynamics of a bouncing ball with a sinusoidally vibrating table revisited , 1996 .

[20]  A. K. Asraff,et al.  Experimental investigation and theoretical modelling of an impact damper , 2013 .

[21]  Remco I. Leine,et al.  Global uniform symptotic attractive stability of the non-autonomous bouncing ball system , 2012 .

[22]  S. Shaw,et al.  Chaotic and periodic dynamics of a slider-crank mechanism with slider clearance , 1994 .

[23]  Yu Guo,et al.  Parametric Analysis of bifurcation and Chaos in a periodically Driven Horizontal Impact Pair , 2012, Int. J. Bifurc. Chaos.

[24]  F. R. E. Crossley,et al.  Multiple Impacts of a Ball Between Two Plates—Part 2: Mathematical Modelling , 1975 .

[25]  Anil K. Bajaj,et al.  Periodic motions and bifurcations in dynamics of an inclined impact pair , 1988 .

[26]  P. C. Tung,et al.  The Dynamics of an Impact Print Hammer , 1988 .