Microbial inoculants for the biocontrol of Fusarium spp. in durum wheat

[1]  Y. Liao,et al.  Antagonistic Mechanism of Iturin A and Plipastatin A from Bacillus amyloliquefaciens S76-3 from Wheat Spikes against Fusarium graminearum , 2015, PloS one.

[2]  F. Trognitz,et al.  Metabolic potential of endophytic bacteria , 2014, Current opinion in biotechnology.

[3]  Lichao Sun,et al.  Antagonistic Action of Bacillus subtilis Strain SG6 on Fusarium graminearum , 2014, PloS one.

[4]  Peisheng Yan,et al.  Biocontrol of Fusarium graminearum Growth and Deoxynivalenol Production in Wheat Kernels with Bacterial Antagonists , 2014, International journal of environmental research and public health.

[5]  F. Gaggìa,et al.  Inoculation with microorganisms of Lolium perenne L.: evaluation of plant growth parameters and endophytic colonization of roots. , 2013, New biotechnology.

[6]  J. Francés,et al.  Biological control of fire blight of apple and pear with antagonistic Lactobacillus plantarum , 2013, European Journal of Plant Pathology.

[7]  Agapi I. Doulgeraki,et al.  An in vitro study of Lactobacillusplantarum strains for the presence of plantaricin genes and their potential control of the table olive microbiota , 2013, Antonie van Leeuwenhoek.

[8]  G. Bergstrom,et al.  Iturin levels on wheat spikes linked to biological control of Fusarium head blight by Bacillus amyloliquefaciens. , 2013, Phytopathology.

[9]  A. Pietro,et al.  Role of new bacterial surfactins in the antifungal interaction between Bacillus amyloliquefaciens and Fusarium oxysporum , 2012 .

[10]  M. Lemmens,et al.  Validation of a modified Petri-dish test to quantify aggressiveness of Fusarium graminearum in durum wheat , 2012, European Journal of Plant Pathology.

[11]  R. Schwan,et al.  A Multiphasic Approach for the Identification of Endophytic Bacterial in Strawberry Fruit and their Potential for Plant Growth Promotion , 2012, Microbial Ecology.

[12]  Heping Zhang,et al.  Production and Characterization of Antifungal Compounds Produced by Lactobacillus plantarum IMAU10014 , 2012, PloS one.

[13]  F. Álvarez,et al.  The plant‐associated Bacillus amyloliquefaciens strains MEP218 and ARP23 capable of producing the cyclic lipopeptides iturin or surfactin and fengycin are effective in biocontrol of sclerotinia stem rot disease , 2012, Journal of applied microbiology.

[14]  F. Gaggìa,et al.  The role of protective and probiotic cultures in food and feed and their impact in food safety , 2011 .

[15]  E. Y. Hirooka,et al.  Lactic acid bacteria in the inhibition of Fusarium graminearum and deoxynivalenol detoxification , 2011, Journal of applied microbiology.

[16]  A. de Vicente,et al.  Plant protection and growth stimulation by microorganisms: biotechnological applications of Bacilli in agriculture. , 2011, Current opinion in biotechnology.

[17]  Wenjun Li,et al.  Biodiversity, bioactive natural products and biotechnological potential of plant-associated endophytic actinobacteria , 2011, Applied Microbiology and Biotechnology.

[18]  O. Nybroe,et al.  Natural functions of lipopeptides from Bacillus and Pseudomonas: more than surfactants and antibiotics. , 2010, FEMS microbiology reviews.

[19]  A. Prodi,et al.  Survey of the main causal agents of fusarium head blight of durum wheat around Bologna, northern Italy , 2010 .

[20]  F. Richard-Forget,et al.  Lactic acid bacteria – Potential for control of mould growth and mycotoxins: A review , 2010 .

[21]  B. Scherens,et al.  New approach for the detection of non-ribosomal peptide synthetase genes in Bacillus strains by polymerase chain reaction , 2010, Applied Microbiology and Biotechnology.

[22]  T. Zhou,et al.  Concurrent selection for microbial suppression of Fusarium graminearum, Fusarium head blight and deoxynivalenol in wheat , 2009, Journal of applied microbiology.

[23]  M. Ongena,et al.  Bacillus lipopeptides: versatile weapons for plant disease biocontrol. , 2008, Trends in microbiology.

[24]  M. L. Ramírez,et al.  Potential biocontrol agents for Fusarium head blight and deoxynivalenol production in wheat , 2007 .

[25]  A. Dobson,et al.  Strategies to Prevent Mycotoxin Contamination of Food and Animal Feed: A Review , 2006, Critical reviews in food science and nutrition.

[26]  J. Nowak,et al.  Use of Plant Growth-Promoting Bacteria for Biocontrol of Plant Diseases: Principles, Mechanisms of Action, and Future Prospects , 2005, Applied and Environmental Microbiology.

[27]  Donald L. Smith,et al.  Intracellular and extracellular PGPR: commonalities and distinctions in the plant–bacterium signaling processes , 2005 .

[28]  M. St-Arnaud,et al.  A PCR-denaturing gradient gel electrophoresis approach to assess Fusarium diversity in asparagus. , 2005, Journal of microbiological methods.

[29]  H. Kistler,et al.  Heading for disaster: Fusarium graminearum on cereal crops. , 2004, Molecular plant pathology.

[30]  Xiang-ming Xu Effects of Environmental Conditions on the Development of Fusarium Ear Blight , 2003, European Journal of Plant Pathology.

[31]  J. Schnürer,et al.  Broad and complex antifungal activity among environmental isolates of lactic acid bacteria. , 2003, FEMS microbiology letters.

[32]  M. Boehm,et al.  Greenhouse and Field Evaluation of Biological Control of Fusarium Head Blight on Durum Wheat. , 2002, Plant disease.

[33]  G. Perrone,et al.  Toxigenic Fusarium species and Mycotoxins Associated with Head Blight in Small-Grain Cereals in Europe , 2002, European Journal of Plant Pathology.

[34]  J. Schnürer,et al.  Lactobacillus plantarum MiLAB 393 Produces the Antifungal Cyclic Dipeptides Cyclo(l-Phe-l-Pro) and Cyclo(l-Phe-trans-4-OH-l-Pro) and 3-Phenyllactic Acid , 2002, Applied and Environmental Microbiology.

[35]  M. Chelius,et al.  The Diversity of Archaea and Bacteria in Association with the Roots of Zea mays L. , 2001, Microbial Ecology.

[36]  L. Cocolin,et al.  Direct profiling of the yeast dynamics in wine fermentations. , 2000, FEMS microbiology letters.

[37]  Y. Benno,et al.  Effect of applying lactic acid bacteria isolated from forage crops on fermentation characteristics and aerobic deterioration of silage. , 1999, Journal of dairy science.

[38]  D. Joyce,et al.  DETECTION AND QUANTIFICATION OF FUSARIUM CULMORUM AND FUSARIUM GRAMINEARUM IN CEREALS USING PCR ASSAYS , 1998 .

[39]  D. Parry,et al.  Fusarium ear blight (scab) in small grain cereals—a review , 1995 .

[40]  A. Uitterlinden,et al.  Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA , 1993, Applied and environmental microbiology.

[41]  R. Remus,et al.  Settlement of the diazotrophic, phytoeffective bacterial strain Pantoea agglomerans on and within winter wheat: An investigation using ELISA and transmission electron microscopy , 1992, Plant and Soil.

[42]  D. R. Tottman The decimal code for the growth stages of cereals, with illustrations , 1987 .