Automatic Design of Digital Synthetic Gene Circuits

De novo computational design of synthetic gene circuits that achieve well-defined target functions is a hard task. Existing, brute-force approaches run optimization algorithms on the structure and on the kinetic parameter values of the network. However, more direct rational methods for automatic circuit design are lacking. Focusing on digital synthetic gene circuits, we developed a methodology and a corresponding tool for in silico automatic design. For a given truth table that specifies a circuit's input–output relations, our algorithm generates and ranks several possible circuit schemes without the need for any optimization. Logic behavior is reproduced by the action of regulatory factors and chemicals on the promoters and on the ribosome binding sites of biological Boolean gates. Simulations of circuits with up to four inputs show a faithful and unequivocal truth table representation, even under parametric perturbations and stochastic noise. A comparison with already implemented circuits, in addition, reveals the potential for simpler designs with the same function. Therefore, we expect the method to help both in devising new circuits and in simplifying existing solutions.

[1]  R. Yu,et al.  Single-cell quantification of molecules and rates using open-source microscope-based cytometry , 2007, Nature Methods.

[2]  Brian M. Frezza,et al.  Modular multi-level circuits from immobilized DNA-based logic gates. , 2007, Journal of the American Chemical Society.

[3]  Terence Hwa,et al.  Transcriptional regulation by the numbers: models. , 2005, Current opinion in genetics & development.

[4]  J. Stelling,et al.  Computational design tools for synthetic biology. , 2009, Current opinion in biotechnology.

[5]  S. Mangan,et al.  The coherent feedforward loop serves as a sign-sensitive delay element in transcription networks. , 2003, Journal of molecular biology.

[6]  G. Seelig,et al.  Enzyme-Free Nucleic Acid Logic Circuits , 2022 .

[7]  Hiroaki Kitano,et al.  The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models , 2003, Bioinform..

[8]  김삼묘,et al.  “Bioinformatics” 특집을 내면서 , 2000 .

[9]  Jörg Stelling,et al.  Synthetic gene network computational design , 2009, 2009 IEEE International Symposium on Circuits and Systems.

[10]  R. Milo,et al.  Topological generalizations of network motifs. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[11]  Tony Kuphaldt Lessons In Electric Circuits, Volume IV – Digital , 2007 .

[12]  Chase L. Beisel,et al.  Design Principles for Riboswitch Function , 2009, PLoS Comput. Biol..

[13]  R. Micura,et al.  Ligand‐Induced Folding of the Adenosine Deaminase A‐Riboswitch and Implications on Riboswitch Translational Control , 2007, Chembiochem : a European journal of chemical biology.

[14]  Mikhail S. Gelfand,et al.  Engineering transcription factors with novel DNA-binding specificity using comparative genomics , 2009, Nucleic acids research.

[15]  Martin Fussenegger,et al.  BioLogic gates enable logical transcription control in mammalian cells , 2004, Biotechnology and bioengineering.

[16]  Ronald R. Breaker,et al.  Thiamine derivatives bind messenger RNAs directly to regulate bacterial gene expression , 2002, Nature.

[17]  Eckart Zitzler,et al.  Design of a biological half adder , 2007 .

[18]  M. Karnaugh The map method for synthesis of combinational logic circuits , 1953, Transactions of the American Institute of Electrical Engineers, Part I: Communication and Electronics.

[19]  Shane T. Jensen,et al.  The Program of Gene Transcription for a Single Differentiating Cell Type during Sporulation in Bacillus subtilis , 2004, PLoS biology.

[20]  J. Collins,et al.  DIVERSITY-BASED, MODEL-GUIDED CONSTRUCTION OF SYNTHETIC GENE NETWORKS WITH PREDICTED FUNCTIONS , 2009, Nature Biotechnology.

[21]  U Alon,et al.  The incoherent feed-forward loop accelerates the response-time of the gal system of Escherichia coli. , 2006, Journal of molecular biology.

[22]  Jonathan A. Goler BioJADE: A Design and Simulation Tool for Synthetic Biological Systems , 2004 .

[23]  Darko Stefanovic,et al.  A deoxyribozyme-based molecular automaton , 2003, Nature Biotechnology.

[24]  Alfonso Jaramillo,et al.  Genetdes: automatic design of transcriptional networks , 2007, Bioinform..

[25]  Madhukar S. Dasika,et al.  OptCircuit: An optimization based method for computational design of genetic circuits , 2008, BMC Systems Biology.

[26]  Christopher A. Voigt,et al.  Environmentally controlled invasion of cancer cells by engineered bacteria. , 2006, Journal of molecular biology.

[27]  R. Weiss,et al.  A universal RNAi-based logic evaluator that operates in mammalian cells , 2007, Nature Biotechnology.

[28]  Fabio Somenzi,et al.  Logic synthesis and verification algorithms , 1996 .

[29]  Ron Weiss,et al.  The Device Physics of Cellular Logic Gates , 2002 .

[30]  D. Endy Foundations for engineering biology , 2005, Nature.

[31]  D. G. Gibson,et al.  Enzymatic assembly of DNA molecules up to several hundred kilobases , 2009, Nature Methods.

[32]  Andreas Kremling,et al.  Modular Modeling of Cellular Systems with ProMoT/Diva , 2003, Bioinform..

[33]  Jeffrey E. Barrick,et al.  Tandem Riboswitch Architectures Exhibit Complex Gene Control Functions , 2006, Science.

[34]  E. Wagner,et al.  Antisense RNA regulation in prokaryotes: rapid RNA/RNA interaction facilitated by a general U-turn loop structure. , 1999, Journal of molecular biology.

[35]  Y. Benenson RNA-based computation in live cells. , 2009, Current opinion in biotechnology.

[36]  Ernst Dieter Gilles,et al.  ProMoT: modular modeling for systems biology , 2009, Bioinform..

[37]  Ahmad S. Khalil,et al.  Synthetic biology: applications come of age , 2010, Nature Reviews Genetics.

[38]  Jörg Stelling,et al.  Computational design of synthetic gene circuits with composable parts , 2008, Bioinform..

[39]  Deepak Chandran,et al.  TinkerCell: modular CAD tool for synthetic biology , 2009, Journal of biological engineering.

[40]  M. Elowitz,et al.  A synthetic oscillatory network of transcriptional regulators , 2000, Nature.

[41]  Kuosheng Ma,et al.  Advancing high-throughput gene synthesis technology. , 2009, Molecular bioSystems.

[42]  A. Serganov,et al.  Ribozymes, riboswitches and beyond: regulation of gene expression without proteins , 2007, Nature Reviews Genetics.

[43]  Hernan G. Garcia,et al.  Transcriptional Regulation by the Numbers 2: Applications , 2004, q-bio/0412011.

[44]  Adam P Arkin,et al.  Deviant effects in molecular reaction pathways , 2006, Nature Biotechnology.

[45]  R. Breaker Complex Riboswitches , 2008, Science.

[46]  D. Crothers,et al.  The kinetics of ligand binding by an adenine-sensing riboswitch. , 2005, Biochemistry.

[47]  Rafael Silva-Rocha,et al.  Mining logic gates in prokaryotic transcriptional regulation networks , 2008, FEBS letters.

[48]  Uri Alon,et al.  An Introduction to Systems Biology , 2006 .

[49]  Farren J. Isaacs,et al.  Engineered riboregulators enable post-transcriptional control of gene expression , 2004, Nature Biotechnology.

[50]  Christopher A. Voigt,et al.  Environmental signal integration by a modular AND gate , 2007, Molecular systems biology.

[51]  S. Mangan,et al.  Article number: 2005.0006 , 2022 .

[52]  Dan Mercola,et al.  A Glycine-Dependent Riboswitch That Uses Cooperative Binding to Control Gene Expression , 2004 .

[53]  Farren J. Isaacs,et al.  RNA synthetic biology , 2006, Nature Biotechnology.

[54]  Mats Jirstrand,et al.  Systems biology Systems Biology Toolbox for MATLAB : a computational platform for research in systems biology , 2006 .

[55]  V. Hakim,et al.  Design of genetic networks with specified functions by evolution in silico. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[56]  Ehud Shapiro,et al.  Towards molecular computers that operate in a biological environment , 2008 .

[57]  Carola Engler,et al.  Golden Gate Shuffling: A One-Pot DNA Shuffling Method Based on Type IIs Restriction Enzymes , 2009, PloS one.

[58]  Michael A. Gibson,et al.  Efficient Exact Stochastic Simulation of Chemical Systems with Many Species and Many Channels , 2000 .

[59]  N. Majdalani,et al.  Bacterial Small RNA Regulators , 2005, Critical reviews in biochemistry and molecular biology.

[60]  Mudita Singhal,et al.  COPASI - a COmplex PAthway SImulator , 2006, Bioinform..

[61]  Holger Ulmer,et al.  JavaEvA : a Java based framework for Evolutionary Algorithms , 2005 .

[62]  Travis S. Bayer,et al.  Programmable ligand-controlled riboregulators of eukaryotic gene expression , 2005, Nature Biotechnology.

[63]  M. Win,et al.  Higher-Order Cellular Information Processing with Synthetic RNA Devices , 2008, Science.