Spatially resolved temperature mapping of electrothermal actuators by surface Raman scattering

In this paper, we report spatially resolved temperature profiles along the legs of working V-shaped electrothermal (ET) actuators using a surface Raman scattering technique. The Raman probe provides nonperturbing optical data with a spatial resolution of 1.2 /spl mu/m, which is required to observe the 3-/spl mu/m-wide actuator beams. A detailed uncertainty analysis reveals that our Raman thermometry of polycrystalline silicon is performed with fidelity of /spl plusmn/10 to 11 K when the peak location of the Stokes-shifted optical phonon signature is used as an indicator of temperature. This level of uncertainty is sufficient for temperature mapping of many working thermal MEMS devices which exhibit characteristic temperature differences of several hundred Kelvins. To our knowledge, these are the first quantitative and spatially resolved temperature data available for thermal actuator structures. This new temperature data set can be used for validation of actuator thermal design models and these new results are compared with finite-difference simulations of actuator thermal performance.

[1]  T. L. Wright,et al.  Thermal metrology of silicon microstructures using Raman spectroscopy , 2005, Semiconductor Thermal Measurement and Management IEEE Twenty First Annual IEEE Symposium, 2005..

[2]  Neville K. S. Lee,et al.  Analysis and design of polysilicon thermal flexure actuator , 1999 .

[3]  I. Wolf Micro-Raman spectroscopy to study local mechanical stress in silicon integrated circuits , 1996 .

[4]  Victor M. Bright,et al.  Applications for surface-micromachined polysilicon thermal actuators and arrays , 1997 .

[5]  Evangelos Anastassakis,et al.  Polycrystalline Si under strain: Elastic and lattice‐dynamical considerations , 1987 .

[6]  T. Hubbard,et al.  Time and frequency response of two-arm micromachined thermal actuators , 2003 .

[7]  Jeremy A. Walraven,et al.  Final Report: Compliant Thermo- Mechanical MEMS Actuators LDRD #52553 , 2004 .

[8]  Ted Hubbard,et al.  Heat transfer analysis and optimization of two-beam microelectromechanical thermal actuators , 2002 .

[9]  W. Weber,et al.  Temperature distribution in Si-MOSFETs studied by micro-Raman spectroscopy , 1992 .

[10]  Deepak Uttamchandani,et al.  Modified asymmetric micro-electrothermal actuator: analysis and experimentation , 2004 .

[11]  Raphael Tsu,et al.  Temperature dependence of silicon Raman lines , 1982 .

[12]  M. Kuball,et al.  Measurement of temperature in active high-power AlGaN/GaN HFETs using Raman spectroscopy , 2002, IEEE Electron Device Letters.

[13]  C. Kittel Introduction to solid state physics , 1954 .

[14]  Timothy W. McLain,et al.  Modeling the thermal behavior of a surface-micromachined linear-displacement thermomechanical microactuator , 2002 .

[15]  J. Sniegowski,et al.  IC-Compatible Polysilicon Surface Micromachining , 2000 .

[16]  P. R. Graves,et al.  Novel applications of Raman microscopy , 1986, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[17]  T. R. Hart,et al.  Temperature Dependence of Raman Scattering in Silicon , 1970 .

[18]  S. J. Kline,et al.  Describing Uncertainties in Single-Sample Experiments , 1953 .

[19]  M. Balkanski,et al.  Anharmonic effects in light scattering due to optical phonons in silicon , 1983 .