Characterization of an acetyl esterase from Myceliophthora thermophila C1 able to deacetylate xanthan.

[1]  B. Moerschbacher,et al.  A Bacillus licheniformis pectin acetylesterase is specific for homogalacturonans acetylated at O-3. , 2014, Carbohydrate polymers.

[2]  S. Koutaniemi,et al.  Distinct roles of carbohydrate esterase family CE16 acetyl esterases and polymer-acting acetyl xylan esterases in xylan deacetylation. , 2013, Journal of biotechnology.

[3]  H. Gruppen,et al.  Comparison of xanthans by the relative abundance of its six constituent repeating units. , 2013, Carbohydrate polymers.

[4]  H. Gruppen,et al.  The influence of the primary and secondary xanthan structure on the enzymatic hydrolysis of the xanthan backbone. , 2013, Carbohydrate polymers.

[5]  Peter Biely,et al.  Microbial carbohydrate esterases deacetylating plant polysaccharides. , 2012, Biotechnology advances.

[6]  L. Pouvreau,et al.  Characterization and mode of action of two acetyl xylan esterases from Chrysosporium lucknowense C1 active towards acetylated xylans. , 2011, Enzyme and microbial technology.

[7]  A. Gusakov,et al.  Development of a mature fungal technology and production platform for industrial enzymes based on a Myceliophthora thermophila isolate, previously known as Chrysosporium lucknowense C1 , 2011 .

[8]  C. Vendruscolo,et al.  Chemical deacetylation natural xanthan (Jungbunzlauer , 2011 .

[9]  P. Christakopoulos,et al.  Carbohydrate esterases of family 2 are 6‐O‐deacetylases , 2010, FEBS letters.

[10]  L. Pouvreau,et al.  Hemicellulase production in Chrysosporium lucknowense C1. , 2009 .

[11]  Takahiro Sato,et al.  Thermal Denaturation, Renaturation, and Aggregation of a Double-Helical Polysaccharide Xanthan in Aqueous Solution , 2009 .

[12]  E. Dodson,et al.  The Active Site of a Carbohydrate Esterase Displays Divergent Catalytic and Noncatalytic Binding Functions , 2009, PLoS biology.

[13]  Darrell N. Kotton,et al.  Figure 3 , 2008 .

[14]  B. Henrissat,et al.  Recent structural insights into the expanding world of carbohydrate-active enzymes. , 2005, Current opinion in structural biology.

[15]  F. Studier,et al.  Protein production by auto-induction in high density shaking cultures. , 2005, Protein expression and purification.

[16]  J. Thibault,et al.  Preparation and properties of enzymatically and chemically modified sugar beet pectins , 2004 .

[17]  Peter A. Williams,et al.  New forms of xanthan gum with enhanced properties , 2004 .

[18]  J. Eyzaguirre,et al.  Regioselective deacetylation of cellulose acetates by acetyl xylan esterases of different CE-families. , 2003, Journal of biotechnology.

[19]  P. Williams,et al.  A rheological study of the order-disorder conformational transition of xanthan gum. , 2001, Biopolymers.

[20]  H. Ruijssenaars,et al.  A Pyruvated Mannose-Specific Xanthan Lyase Involved in Xanthan Degradation by Paenibacillus alginolyticusXL-1 , 1999, Applied and Environmental Microbiology.

[21]  K. Murata,et al.  Xanthan Lyase of Bacillus sp. Strain GL1 Liberates Pyruvylated Mannose from Xanthan Side Chains , 1998, Applied and Environmental Microbiology.

[22]  M. Tenkanen Action of Trichoderma Reesei and Aspergillus Oryzae Esterases in the Deacetylation of Hemicelluloses , 1998, Biotechnology and applied biochemistry.

[23]  D. Weisleder,et al.  Substrate specificity of acetylxylan esterase from Schizophyllum commune: mode of action on acetylated carbohydrates. , 1996, Biochimica et biophysica acta.

[24]  J. Ubbink,et al.  On the conformational transitions of native xanthan , 1993 .

[25]  L. Viikari,et al.  Enzymatic deacetylation of galactoglucomannans , 1993, Applied Microbiology and Biotechnology.

[26]  J. Stankowski,et al.  Location of a second O-acetyl group in xanthan gum by the reductive-cleavage method. , 1993, Carbohydrate research.

[27]  F. Kormelink,et al.  Purification and characterization of an acetyl xylan esterase from Aspergillus niger , 1993 .

[28]  A. Voragen,et al.  Rhamnogalacturonan acetylesterase: a novel enzyme from Aspergillus aculeatus, specific for the deacetylation of hairy (ramified) regions of pectins , 1992, Applied Microbiology and Biotechnology.

[29]  D. Doherty,et al.  Genetic Engineering of Polysaccharide Structure: Production of Variants of Xanthan Gum in Xanthomonas campestris , 1990, Biotechnology progress.

[30]  I. Sutherland,et al.  Influence of acetyl and pyruvate substituents on the solution properties of xanthan polysaccharide. , 1990, International journal of biological macromolecules.

[31]  M. Tako,et al.  Rheological Properties of Deacetylated Xanthan in Aqueous Media , 1984 .

[32]  I. Sutherland Hydrolysis of unordered xanthan in solution by fungal cellulases , 1984 .

[33]  M. Rinaudo,et al.  Enzymic hydrolysis of the bacterial polysaccharide xanthan by cellulase , 1980 .

[34]  M. Rinaudo,et al.  Conformational investigation on the bacterial polysaccharide xanthan. , 1979, Carbohydrate research.

[35]  P. Sandford,et al.  Extracellular Microbial Polysaccharides , 1977 .

[36]  E. Morris,et al.  Order-disorder transition for a bacterial polysaccharide in solution. A role for polysaccharide conformation in recognition between Xanthomonas pathogen and its plant host. , 1977, Journal of molecular biology.

[37]  P. Jansson,et al.  Structure of extracellular polysaccharide from Xanthomonas campestris. , 1975, Carbohydrate research.

[38]  Mark D. Foster,et al.  RHEOLOGICAL STUDY OF , 2005 .

[39]  J. Eyzaguirre,et al.  Comparison of catalytic properties of acetyl xylan esterases from three carbohydrate esterase families , 2003 .

[40]  W. Deckwer,et al.  Effect of the Nitrogen Source on Pyruvate Content and Rheological Properties of Xanthan , 1999, Biotechnology progress.

[41]  I. Sutherland,et al.  Influence of the acetyl substituent on the interaction of xanthan with plant polysaccharides — II. Xanthan-guar gum systems , 1990 .

[42]  I. Sutherland,et al.  Modified xanthan—its preparation and viscosity , 1983 .

[43]  日本農芸化学会 Agricultural and biological chemistry , 1961 .