Technical advances in the generation of transgenic animals and in their applications. Nantes, France, June 7th 2013

[1]  X. Cui,et al.  Whole-rat conditional gene knockout via genome editing , 2013, Nature Methods.

[2]  S. Ekker,et al.  The CRISPR system--keeping zebrafish gene targeting fresh. , 2013, Zebrafish.

[3]  Emmanuelle Charpentier,et al.  The tracrRNA and Cas9 families of type II CRISPR-Cas immunity systems , 2013, RNA biology.

[4]  J. Doudna,et al.  Biotechnology: Rewriting a genome , 2013, Nature.

[5]  Shuo Lin,et al.  TALEN-mediated precise genome modification by homologous recombination in zebrafish , 2013, Nature Methods.

[6]  Wolfgang Wurst,et al.  Direct production of mouse disease models by embryo microinjection of TALENs and oligodeoxynucleotides , 2013, Proceedings of the National Academy of Sciences.

[7]  Michael J. Osborn,et al.  High-Affinity IgG Antibodies Develop Naturally in Ig-Knockout Rats Carrying Germline Human IgH/Igκ/Igλ Loci Bearing the Rat CH Region , 2013, The Journal of Immunology.

[8]  Ignacio Anegon,et al.  Generation of Rag1‐knockout immunodeficient rats and mice using engineered meganucleases , 2013, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[9]  Jeffry D. Sander,et al.  Efficient In Vivo Genome Editing Using RNA-Guided Nucleases , 2013, Nature Biotechnology.

[10]  M. Gossen,et al.  Tet-Transgenic Rodents: a comprehensive, up-to date database , 2012, Transgenic Research.

[11]  Daniel F. Voytas,et al.  Efficient TALEN-mediated gene knockout in livestock , 2012, Proceedings of the National Academy of Sciences.

[12]  Colby G Starker,et al.  In vivo Genome Editing Using High Efficiency TALENs , 2012, Nature.

[13]  J. Doudna,et al.  A Programmable Dual-RNA–Guided DNA Endonuclease in Adaptive Bacterial Immunity , 2012, Science.

[14]  J. Keith Joung,et al.  Highly efficient generation of heritable zebrafish gene mutations using homo- and heterodimeric TALENs , 2012, Nucleic acids research.

[15]  Daniel F Voytas,et al.  A TALE of two nucleases: gene targeting for the masses? , 2011, Zebrafish.

[16]  Elo Leung,et al.  Knockout rats generated by embryo microinjection of TALENs , 2011, Nature Biotechnology.

[17]  J. Vogel,et al.  CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III , 2011, Nature.

[18]  X. Cui,et al.  Targeted integration in rat and mouse embryos with zinc-finger nucleases , 2011, Nature Biotechnology.

[19]  M. Gossen,et al.  Improved Tet-responsive promoters with minimized background expression , 2010, BMC biotechnology.

[20]  Michael J. Osborn,et al.  Characterization of immunoglobulin heavy chain knockout rats , 2010, European journal of immunology.

[21]  Alison L. Van Eenennaam,et al.  Precision genetics for complex objectives in animal agriculture , 2010, Journal of animal science.

[22]  Bruce Whitelaw,et al.  Zinc finger nuclease technology heralds a new era in mammalian transgenesis. , 2010, Trends in biotechnology.

[23]  Ignacio Anegon,et al.  Knockout Rats via Embryo Microinjection of Zinc-Finger Nucleases , 2009, Science.

[24]  Dirk Görlich,et al.  Inducible expression of coding and inhibitory RNAs from retargetable genomic loci , 2009, Nucleic acids research.

[25]  C. Hsieh,et al.  Germline Competent Embryonic Stem Cells Derived from Rat Blastocysts , 2008, Cell.

[26]  S. Remy,et al.  Transgenic Modifications of the Rat Genome , 2005, Transgenic Research.

[27]  B. Whitelaw,et al.  A future for transgenic livestock , 2003, Nature Reviews Genetics.

[28]  Hermann Bujard,et al.  The power of reversibility regulating gene activities via tetracycline-controlled transcription. , 2010, Methods in enzymology.

[29]  C. Warkup,et al.  Dolly for dinner? Assessing commercial and regulatory trends in cloned livestock , 2007, Nature Biotechnology.