Nonmaximally Entangled States: Production, Characterization, and Utilization

Using a spontaneous-down-conversion photon source, we produce true nonmaximally entangled states, i.e., without the need for postselection. The degree and phase of entanglement are readily tunable, and are characterized both by a standard analysis using coincidence minima, and by quantum state tomography of the two-photon state. Using the latter, we experimentally reconstruct the reduced density matrix for the polarization. Finally, we use these states to measure the Hardy fraction, obtaining a result that is 122σ from any local-realistic result. ©1999 The American Physical Society

[1]  C. Ross Found , 1869, The Dental register.

[2]  Albert Einstein,et al.  Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? , 1935 .

[3]  E. Schrödinger Discussion of Probability Relations between Separated Systems , 1935, Mathematical Proceedings of the Cambridge Philosophical Society.

[4]  J. Bell On the Einstein-Podolsky-Rosen paradox , 1964 .

[5]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.

[6]  Charles H. Bennett,et al.  Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. , 1992, Physical review letters.

[7]  Beck,et al.  Measurement of the Wigner distribution and the density matrix of a light mode using optical homodyne tomography: Application to squeezed states and the vacuum. , 1993, Physical review letters.

[8]  Eberhard,et al.  Background level and counter efficiencies required for a loophole-free Einstein-Podolsky-Rosen experiment. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[9]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[10]  L. Hardy,et al.  Nonlocality for two particles without inequalities for almost all entangled states. , 1993, Physical review letters.

[11]  Hardy's approach, Eberhard's inequality, and supplementary assumptions. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[12]  Leonhardt Quantum-state tomography and discrete Wigner function. , 1995, Physical review letters.

[13]  David Branning,et al.  Experimental demonstration of the violation of local realism without Bell inequalities , 1995 .

[14]  Barry C. Sanders,et al.  II Quantum Phenomena in Optical Interferometry , 1996 .

[15]  King,et al.  Experimental Determination of the Motional Quantum State of a Trapped Atom. , 1996, Physical review letters.

[16]  Charles H. Bennett,et al.  Mixed-state entanglement and quantum error correction. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[17]  Weinfurter,et al.  Dense coding in experimental quantum communication. , 1996, Physical review letters.

[18]  F. De Martini,et al.  Experimental test of the violation of local realism in quantum mechanics without Bell inequalities , 1997 .

[19]  H. Weinfurter,et al.  Experimental quantum teleportation , 1997, Nature.

[20]  Paul G. Kwiat,et al.  Hyper-entangled states , 1997 .

[21]  C. S. Wood,et al.  Deterministic Entanglement of Two Trapped Ions , 1998 .

[22]  D. Leung,et al.  Experimental realization of a quantum algorithm , 1998, Nature.

[23]  N. J. Cerf,et al.  Optical simulation of quantum logic , 1998 .

[24]  F. Martini,et al.  Experimental Realization of Teleporting an Unknown Pure Quantum State via Dual Classical and Einstein-Podolsky-Rosen Channels , 1997, quant-ph/9710013.

[25]  R. Spreeuw A Classical Analogy of Entanglement , 1998 .

[26]  R. Cleve,et al.  HOW TO SHARE A QUANTUM SECRET , 1999, quant-ph/9901025.

[27]  S. Strogatz,et al.  Time Delay in the Kuramoto Model of Coupled Oscillators , 1998, chao-dyn/9807030.

[28]  W. Steen,et al.  Principles of Optics M. Born and E. Wolf, 7th (expanded) edition, Cambridge University Press, Cambridge, 1999, 952pp. £37.50/US $59.95, ISBN 0-521-64222-1 , 2000 .