A Study of the Radiation Tolerance of CVD Diamond to 70 MeV Protons, Fast Neutrons and 200 MeV Pions

We measured the radiation tolerance of commercially available diamonds grown by the Chemical Vapor Deposition process by measuring the charge created by a 120 GeV hadron beam in a 50 μm pitch strip detector fabricated on each diamond sample before and after irradiation. We irradiated one group of samples with 70 MeV protons, a second group of samples with fast reactor neutrons (defined as energy greater than 0.1 MeV), and a third group of samples with 200 MeV pions, in steps, to (8.8±0.9) × 1015 protons/cm2, (1.43±0.14) × 1016 neutrons/cm2, and (6.5±1.4) × 1014 pions/cm2, respectively. By observing the charge induced due to the separation of electron–hole pairs created by the passage of the hadron beam through each sample, on an event-by-event basis, as a function of irradiation fluence, we conclude all datasets can be described by a first-order damage equation and independently calculate the damage constant for 70 MeV protons, fast reactor neutrons, and 200 MeV pions. We find the damage constant for diamond irradiated with 70 MeV protons to be 1.62±0.07(stat)±0.16(syst)× 10−18 cm2/(p μm), the damage constant for diamond irradiated with fast reactor neutrons to be 2.65±0.13(stat)±0.18(syst)× 10−18 cm2/(n μm), and the damage constant for diamond irradiated with 200 MeV pions to be 2.0±0.2(stat)±0.5(syst)× 10−18 cm2/(π μm). The damage constants from this measurement were analyzed together with our previously published 24 GeV proton irradiation and 800 MeV proton irradiation damage constant data to derive the first comprehensive set of relative damage constants for Chemical Vapor Deposition diamond. We find 70 MeV protons are 2.60 ± 0.29 times more damaging than 24 GeV protons, fast reactor neutrons are 4.3 ± 0.4 times more damaging than 24 GeV protons, and 200 MeV pions are 3.2 ± 0.8 more damaging than 24 GeV protons. We also observe the measured data can be described by a universal damage curve for all proton, neutron, and pion irradiations we performed of Chemical Vapor Deposition diamond. Finally, we confirm the spatial uniformity of the collected charge increases with fluence for polycrystalline Chemical Vapor Deposition diamond, and this effect can also be described by a universal curve.

Olivier Rossetto | Lukas Bäni | Andreas Alexopoulos | Marina Artuso | Felix Bachmair | Marcin Bartosik | Helge Beck | Vincenzo Bellini | Vladimir Belyaev | Benjamin Bentele | Alexandre Bes | Jean-Marie Brom | Gabriele Chiodini | Dominik Chren | Vladimir Cindro | Gilles Claus | Johann Collot | John Cumalat | Sébastien Curtoni | Anne Dabrowski | Raffaello D'Alessandro | Denis Dauvergne | Wim de Boer | Christian Dorfer | Marc Dünser | Gerald Eigen | Vladimir Eremin | Jacopo Forneris | Laurent Gallin-Martel | Marie-Laure Gallin-Martel | Kock Gan | Martin Gastal | Abderrahman Ghimouz | Mathieu Goffe | Joel Goldstein | Alexander Golubev | Andrej Gorisek | Eugene Grigoriev | Jörn Grosse-Knetter | Aidan Grummer | Bojan Hiti | Dmitry Hits | Martin Hoeferkamp | Jérôme Hosselet | Fabian Hügging | Chris Hutson | Jens Janssen | Harris Kagan | Keida Kanxheri | Richard Kass | Mladen Kis | Gregor Kramberger | Sergey Kuleshov | Ana Lacoste | Stefano Lagomarsino | Alessandro Lo Giudice | Ivan López Paz | Eric Lukosi | Chaker Maazouzi | Igor Mandic | Sara Marcatili | Alysia Marino | Cédric Mathieu | Mauro Menichelli | Marko Mikuz | Arianna Morozzi | Francesco Moscatelli | Joshua Moss | Raymond Mountain | Alexander Oh | Paolo Olivero | Daniele Passeri | Heinz Pernegger | Roberto Perrino | Federico Picollo | Michal Pomorski | Renato Potenza | Arnulf Quadt | Fatah Rarbi | Alessandro Re | Michael Reichmann | Shaun Roe | Diego Sanz Becerra | Christian Schmidt | Stephen Schnetzer | Silvio Sciortino | Andrea Scorzoni | Sally Seidel | Leonello Servoli | Dale Smith | Bruno Sopko | Vit Sopko | Stefania Spagnolo | Stefan Spanier | Kevin Stenson | Robert Stone | Bjarne Stugu | Concetta Sutera | Michael Träger | William Trischuk | Marco Truccato | Cristina Tuvè | Jaap Velthuis | Stephen Wagner | Rainer Wallny | Jianchun Wang | Norbert Wermes | Jayashani Wickramasinghe | Mahfoud Yamouni | Justas Zalieckas | Marko Zavrtanik | Kazuhiko Hara | Yoichi Ikegami | Osamu Jinnouchi | Takashi Kohriki | Shingo Mitsui | Ryo Nagai | Susumu Terada | Yoshinobu Unno | K. Hara | S. Seidel | R. Kass | S. Roe | H. Pernegger | D. Passeri | L. Servoli | V. Eremin | G. Chiodini | V. Cindro | J. Collot | G. Eigen | A. Gorišek | J. Grosse-Knetter | M. Hoeferkamp | Y. Ikegami | O. Jinnouchi | T. Kohriki | G. Kramberger | S. Kuleshov | I. Mandić | M. Mikuž | S. Mitsui | J. Moss | R. Nagai | A. Oh | R. Perrino | A. Quadt | V. Sopko | B. Sopko | S. Spagnolo | S. Terada | W. Trischuk | Y. Unno | N. Wermes | P. Olivero | A. Scorzoni | W. Boer | J. Janssen | J. Brom | R. Potenza | C. Tuvè | M. Menichelli | L. Bäni | M. Dünser | R. Wallny | J. Goldstein | J. Cumalat | K. Stenson | D. Hits | S. Schnetzer | R. Stone | S. Spanier | F. Bachmair | A. Dabrowski | I. L. Paz | M. Gastal | J. Velthuis | L. Gallin-Martel | E. Grigoriev | H. Kagan | S. Sciortino | S. Lagomarsino | M. Reichmann | C. Dorfer | F. Moscatelli | D. S. Becerra | G. Claus | M. Pomorski | S. Marcatili | M. Artuso | H. Beck | A. Grummer | B. Hiti | J. Zalieckas | J. Hosselet | C. Maazouzi | C. Sutera | A. Marino | D. Chren | F. Hügging | C. Schmidt | V. Bellini | F. Moscatelli | O. Rossetto | K. Gan | M. Truccato | M. Gallin-Martel | A. Giudice | M. Zavrtanik | K. Kanxheri | A. Morozzi | A. Golubev | Jian-Chyun Wang | V. Belyaev | S. Curtoni | D. Dauvergne | F. Rarbi | A. Lacoste | M. Goffe | A. Alexopoulos | M. Bartosik | B. Bentele | A. Bes | J. Forneris | M. Kis | E. Lukosi | F. Picollo | A. Re | M. Yamouni | S. Wagner | M. Träger | R. D’Alessandro | R. Mountain | C. Mathieu | B. Stugu | D. Smith | C. Hutson | A. Ghimouz | J. Wickramasinghe | W. Boer | A. Ghimouz

[1]  Marko Zavrtanik,et al.  Radiation damage in p-type silicon irradiated with neutrons and protons , 2009 .

[2]  W. Boer,et al.  Simulation of beam induced lattice defects of diamond detectors using FLUKA , 2013, 1308.5419.

[3]  G. Zerovnik,et al.  Computational analysis of the dose rates at JSI TRIGA reactor irradiation facilities. , 2017, Applied radiation and isotopes : including data, instrumentation and methods for use in agriculture, industry and medicine.

[4]  Shulai Zhao,et al.  Characterization of the Electrical Properties of Polycrystalline Diamond Films , 1994 .

[5]  Lucio Rossi,et al.  High-Luminosity Large Hadron Collider (HL-LHC) : Preliminary Design Report , 2015 .

[6]  Shaun Roe,et al.  Parameterisation of radiation effects on CVD diamond for proton irradiation , 1999 .

[7]  T. Montaruli,et al.  CERN European Organization for Nuclear Research , 2018, The Grants Register 2019.

[8]  Marko Zavrtanik,et al.  Investigation of charge multiplication in single crystalline CVD diamond particle detectors , 2017 .

[9]  G Claus,et al.  A study of the radiation tolerance of poly-crystalline and single-crystalline CVD diamond to 800 MeV and 24 GeV protons , 2019, Journal of Physics D: Applied Physics.

[10]  C. Jacoboni,et al.  A review of some charge transport properties of silicon , 1977 .

[11]  Piero Pianetta,et al.  Particle- and photoinduced conductivity in type-IIa diamonds , 1993 .

[12]  Claude Colledani,et al.  A submicron precision silicon telescope for beam test purposes , 1996 .

[13]  F. Bachmair,et al.  CVD Diamond Sensors In Detectors For High Energy Physics , 2016 .

[14]  K. Hecht Zum Mechanismus des lichtelektrischen Primärstromes in isolierenden Kristallen , 1932 .

[15]  Luka Snoj,et al.  Computational analysis of irradiation facilities at the JSI TRIGA reactor. , 2012, Applied radiation and isotopes : including data, instrumentation and methods for use in agriculture, industry and medicine.

[16]  M. Havranek,et al.  Signal and noise of diamond pixel detectors at high radiation fluences , 2012, 1206.6795.

[17]  Marko Zavrtanik,et al.  Determination of effective trapping times for electrons and holes in irradiated silicon , 2002 .

[18]  M. Glaser,et al.  Dosimetry Assessments in the Irradiation Facilities at the CERN-PS Accelerator , 2005, IEEE Transactions on Nuclear Science.

[19]  L. Rossi,et al.  Chapter 1: High Luminosity Large Hadron Collider HL-LHC , 2016, 1705.08830.

[20]  Lukas Bäni,et al.  Top Quarks and Diamonds , 2017 .