Maximum principle in linear finite element approximations of anisotropic diffusion–convection–reaction problems

A mesh condition is developed for linear finite element approximations of anisotropic diffusion–convection–reaction problems to satisfy a discrete maximum principle. Loosely speaking, the condition requires that the mesh be simplicial and $$\mathcal {O}(\Vert \varvec{b}\Vert _\infty h + \Vert c\Vert _\infty h^2)$$O(‖b‖∞h+‖c‖∞h2)-nonobtuse when the dihedral angles are measured in the metric specified by the inverse of the diffusion matrix, where $$h$$h denotes the mesh size and $$\varvec{b}$$b and $$c$$c are the coefficients of the convection and reaction terms. In two dimensions, the condition can be replaced by a weaker mesh condition (an $$\mathcal {O}(\Vert \varvec{b}\Vert _\infty h + \Vert c\Vert _\infty h^2)$$O(‖b‖∞h+‖c‖∞h2) perturbation of a generalized Delaunay condition). These results include many existing mesh conditions as special cases. Numerical results are presented to verify the theoretical findings.

[1]  Ivar Aavatsmark,et al.  Discretization on Unstructured Grids For Inhomogeneous, Anisotropic Media. Part II: Discussion And Numerical Results , 1998, SIAM J. Sci. Comput..

[2]  Sergey Korotov,et al.  An Algebraic Discrete Maximum Principle in Hilbert Space with Applications to Nonlinear Cooperative Elliptic Systems , 2009, SIAM J. Numer. Anal..

[3]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[4]  Christophe Le Potier,et al.  A nonlinear finite volume scheme satisfying maximum and minimum principles for diffusion operators , 2009 .

[5]  Sergey Korotov,et al.  On discrete maximum principles for nonlinear elliptic problems , 2007, Math. Comput. Simul..

[6]  Sophia Blau,et al.  Analysis Of The Finite Element Method , 2016 .

[7]  Richard Liska,et al.  Enforcing the Discrete Maximum Principle for Linear Finite Element Solutions of Second-Order Elliptic Problems , 2007 .

[8]  Louis J. Durlofsky,et al.  Unstructured grid optimization for improved monotonicity of discrete solutions of elliptic equations with highly anisotropic coefficients , 2006, J. Comput. Phys..

[9]  Sibylle Günter,et al.  Modelling of heat transport in magnetised plasmas using non-aligned coordinates , 2005 .

[10]  Robert D. Russell,et al.  Adaptive Moving Mesh Methods , 2010 .

[11]  Gisbert Stoyan,et al.  On maximum principles for monotone matrices , 1986 .

[12]  Prateek Sharma,et al.  Preserving monotonicity in anisotropic diffusion , 2007, J. Comput. Phys..

[13]  Philippe G. Ciarlet,et al.  Discrete maximum principle for finite-difference operators , 1970 .

[14]  Daniil Svyatskiy,et al.  Mesh Adaptation and Discrete Maximum Principle for 2 D Anisotropic Diffusion Problems , 2007 .

[15]  Weizhang Huang,et al.  Discrete maximum principle and a Delaunay-type mesh condition for linear finite element approximations of two-dimensional anisotropic diffusion problems , 2010, 1008.0562.

[16]  Todd F. Dupont,et al.  Failure of the discrete maximum principle for an elliptic finite element problem , 2004, Math. Comput..

[17]  Weizhang Huang Mathematical Principles of Anisotropic Mesh Adaptation , 2006 .

[18]  Peter A. Forsyth,et al.  A Control-Volume, Finite-Element Method for Local Mesh Refinement in Thermal Reservoir Simulation , 1990 .

[19]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[20]  Ran Zhang,et al.  Maximum Principles for P1-Conforming Finite Element Approximations of Quasi-linear Second Order Elliptic Equations , 2011, SIAM J. Numer. Anal..

[21]  Weizhang Huang,et al.  An anisotropic mesh adaptation method for the finite element solution of heterogeneous anisotropic diffusion problems , 2010, J. Comput. Phys..

[22]  Daniil Svyatskiy,et al.  A constrained finite element method satisfying the discrete maximum principle for anisotropic diffusion problems , 2009, J. Comput. Phys..

[23]  Joachim Weickert,et al.  Anisotropic diffusion in image processing , 1996 .

[24]  P. G. Ciarlet,et al.  Maximum principle and uniform convergence for the finite element method , 1973 .

[25]  Frank W. Letniowski,et al.  Three-Dimensional Delaunay Triangulations for Finite Element Approximations to a Second-Order Diffusion Operator , 1992, SIAM J. Sci. Comput..

[26]  Alexandre Ern,et al.  Discrete maximum principle for Galerkin approximations of the Laplace operator on arbitrary meshes , 2004 .

[27]  Mikhail Shashkov,et al.  A constrained finite element method satisfying the discrete maximum principle for anisotropic diusion problems on arbitrary meshes. , 2008 .

[28]  Sibylle Günter,et al.  A mixed implicit-explicit finite difference scheme for heat transport in magnetised plasmas , 2009, J. Comput. Phys..

[29]  Ivar Aavatsmark,et al.  Discretization on Unstructured Grids for Inhomogeneous, Anisotropic Media. Part I: Derivation of the Methods , 1998, SIAM J. Sci. Comput..

[30]  Daniil Svyatskiy,et al.  Monotone finite volume schemes for diffusion equations on unstructured triangular and shape-regular polygonal meshes , 2007, J. Comput. Phys..

[31]  Jitendra Malik,et al.  Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[32]  Ludmil T. Zikatanov,et al.  A monotone finite element scheme for convection-diffusion equations , 1999, Math. Comput..

[33]  Sergey Korotov,et al.  The discrete maximum principle for linear simplicial finite element approximations of a reaction-diffusion problem , 2008 .