Hopf bifurcation and heteroclinic orbit in a 3D autonomous chaotic system
暂无分享,去创建一个
[1] Guanrong Chen,et al. On a Generalized Lorenz Canonical Form of Chaotic Systems , 2002, Int. J. Bifurc. Chaos.
[2] C. P. Silva,et al. Shil'nikov's theorem-a tutorial , 1993 .
[3] Haijun Wang,et al. Homoclinic and heteroclinic orbits and bifurcations of a New Lorenz-Type System , 2011, Int. J. Bifurc. Chaos.
[4] Leo R. M. Maas,et al. The diffusionless Lorenz equations; Shil'nikov bifurcations and reduction to an explicit map , 2000 .
[5] Xianyi Li,et al. Dynamical properties and simulation of a new Lorenz-like chaotic system , 2011 .
[6] Guanrong Chen,et al. YET ANOTHER CHAOTIC ATTRACTOR , 1999 .
[7] A. Mees,et al. Homoclinic and heteroclinic orbits in the double scroll attractor , 1987 .
[8] Y. Kuznetsov. Elements of applied bifurcation theory (2nd ed.) , 1998 .
[9] Qigui Yang,et al. A Chaotic System with One saddle and Two Stable Node-Foci , 2008, Int. J. Bifurc. Chaos.
[10] Guanrong Chen,et al. On the generalized Lorenz canonical form , 2005 .
[11] Qigui Yang,et al. Dynamics of a new Lorenz-like chaotic system , 2010 .
[12] Kuifei Huang,et al. Stability and Hopf bifurcation analysis of a new system , 2009 .
[13] Jinhu Lu,et al. A New Chaotic Attractor Coined , 2002, Int. J. Bifurc. Chaos.
[14] Leon O. Chua,et al. Chaos Synchronization in Chua's Circuit , 1993, J. Circuits Syst. Comput..
[15] Gheorghe Tigan,et al. Heteroclinic orbits in the T and the Lü systems , 2009 .
[16] E. Lorenz. Deterministic nonperiodic flow , 1963 .
[17] Y. Kuznetsov. Elements of Applied Bifurcation Theory , 2023, Applied Mathematical Sciences.
[18] Guanrong Chen,et al. On homoclinic and heteroclinic orbits of Chen's System , 2006, Int. J. Bifurc. Chaos.
[19] Guanrong Chen,et al. A Unified Lorenz-Type System and its Canonical Form , 2006, Int. J. Bifurc. Chaos.