Dual color optogenetic control of neural populations using low-noise, multishank optoelectrodes

[1]  W. Li,et al.  Integrated multi-LED array with three-dimensional polymer waveguide for optogenetics , 2013, 2013 IEEE 26th International Conference on Micro Electro Mechanical Systems (MEMS).

[2]  Y.C. Lee,et al.  Soldering technology for optoelectronic packaging , 1996, 1996 Proceedings 46th Electronic Components and Technology Conference.

[3]  K. Deisseroth,et al.  Millisecond-timescale, genetically targeted optical control of neural activity , 2005, Nature Neuroscience.

[4]  Eran Stark,et al.  Local generation of multineuronal spike sequences in the hippocampal CA1 region , 2015, Proceedings of the National Academy of Sciences.

[5]  Michael M. Halassa,et al.  Selective optical drive of thalamic reticular nucleus generates thalamic bursts & cortical spindles , 2011, Nature Neuroscience.

[6]  Michael R. Watts,et al.  Large-scale nanophotonic phased array , 2013, Nature.

[7]  Amnon Yariv,et al.  Integrated Optics , 2019, The Microflow Cytometer.

[8]  Steffen B. E. Wolff,et al.  A polymer-based neural microimplant for optogenetic applications: design and first in vivo study. , 2013, Lab on a chip.

[9]  Feng Zhang,et al.  An optical neural interface: in vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology , 2007, Journal of neural engineering.

[10]  K. Deisseroth,et al.  Red-shifted optogenetic excitation: a tool for fast neural control derived from Volvox carteri , 2008, Nature Neuroscience.

[11]  K. Deisseroth,et al.  Optogenetics , 2013, Proceedings of the National Academy of Sciences.

[12]  E. Marcatili Bends in optical dielectric guides , 1969 .

[13]  G. Buzsáki,et al.  GaN-on-Si μLED optoelectrodes for high-spatiotemporal-accuracy optogenetics in freely behaving animals , 2016, 2016 IEEE International Electron Devices Meeting (IEDM).

[14]  John P. Seymour,et al.  Investigation of the photoelectrochemical effect in optoelectrodes and potential uses for implantable electrode characterization* , 2013, 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC).

[15]  Stefan R. Pulver,et al.  Independent Optical Excitation of Distinct Neural Populations , 2014, Nature Methods.

[16]  Yei Hwan Jung,et al.  Injectable, Cellular-Scale Optoelectronics with Applications for Wireless Optogenetics , 2013, Science.

[17]  F. Leonberger,et al.  Integrated optics , 1986, IEEE Journal of Quantum Electronics.

[18]  Xingsheng Liu,et al.  Comparison between epi-down and epi-up bonded high-power single-mode 980-nm semiconductor lasers , 2004, IEEE Transactions on Advanced Packaging.

[19]  J. Spudich,et al.  Natural light-gated anion channels: A family of microbial rhodopsins for advanced optogenetics , 2015, Science.

[20]  G. Buzsáki,et al.  Fiberless multicolor neural optoelectrode for in vivo circuit analysis , 2016, Scientific Reports.

[21]  K.D. Wise,et al.  Silicon microsystems for neuroscience and neural prostheses , 2005, IEEE Engineering in Medicine and Biology Magazine.

[22]  Matteo Carandini,et al.  Kilosort: realtime spike-sorting for extracellular electrophysiology with hundreds of channels , 2016, bioRxiv.

[23]  Kensall D. Wise,et al.  A dual-shank neural probe integrated with double waveguides on each shank for optogenetic applications , 2011, 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[24]  Lynn Hazan,et al.  Klusters, NeuroScope, NDManager: A free software suite for neurophysiological data processing and visualization , 2006, Journal of Neuroscience Methods.

[25]  Fred C. Lee,et al.  Conducted EMI analysis of a boost PFC circuit , 1997, Proceedings of APEC 97 - Applied Power Electronics Conference.

[26]  P Andersen,et al.  Brain temperature and hippocampal function , 1995, Hippocampus.

[27]  O. Paul,et al.  Ultracompact optrode with integrated laser diode chips and SU-8 waveguides for optogenetic applications , 2013, 2013 IEEE 26th International Conference on Micro Electro Mechanical Systems (MEMS).

[28]  Patrick Ruther,et al.  Let There Be Light—Optoprobes for Neural Implants , 2017, Proceedings of the IEEE.

[29]  T. Hayashi,et al.  An innovative bonding technique for optical chips using solder bumps that eliminate chip positioning adjustments , 1992 .

[30]  K. Mathieson,et al.  Depth-specific optogenetic control in vivo with a scalable, high-density μLED neural probe , 2016, Scientific Reports.

[31]  P. Schwartzkroin,et al.  Effects of temperature alterations on population and cellular activities in hippocampal slices from mature and immature rabbit , 1988, Brain Research.

[32]  Zengcai V. Guo,et al.  Procedures for Behavioral Experiments in Head-Fixed Mice , 2014, PloS one.

[33]  Dnyaneshwar Shaligram Patil,et al.  Semiconductor Laser Diode Technology and Applications , 2012 .

[34]  E. Laboure,et al.  Accurate simulation of conducted interferences in isolated DC to DC converters regarding to EMI standards , 1996, PESC Record. 27th Annual IEEE Power Electronics Specialists Conference.

[35]  M. Scanziani,et al.  Inhibition of Inhibition in Visual Cortex: The Logic of Connections Between Molecularly Distinct Interneurons , 2013, Nature Neuroscience.

[36]  Massimo Scanziani,et al.  An improved chloride-conducting channelrhodopsin for light-induced inhibition of neuronal activity in vivo , 2015, Scientific Reports.

[37]  K. Najafi,et al.  Scaling limitations of silicon multichannel recording probes , 1990, IEEE Transactions on Biomedical Engineering.

[38]  G. Buzsáki,et al.  Monolithically Integrated μLEDs on Silicon Neural Probes for High-Resolution Optogenetic Studies in Behaving Animals , 2015, Neuron.

[39]  G. Buzsáki,et al.  An implantable neural probe with monolithically integrated dielectric waveguide and recording electrodes for optogenetics applications , 2013, Journal of neural engineering.

[40]  Attila Losonczy,et al.  Multi‐array silicon probes with integrated optical fibers: light‐assisted perturbation and recording of local neural circuits in the behaving animal , 2010, The European journal of neuroscience.

[41]  Jacob G. Bernstein,et al.  Millisecond-Timescale Optical Control of Neural Dynamics in the Nonhuman Primate Brain , 2009, Neuron.

[42]  M. Fee,et al.  Using temperature to analyze temporal dynamics in the songbird motor pathway , 2008, Nature.

[43]  Nicholas J Michelson,et al.  A Materials Roadmap to Functional Neural Interface Design , 2018, Advanced functional materials.

[44]  Euisik Yoon,et al.  State-of-the-art MEMS and microsystem tools for brain research , 2017, Microsystems & Nanoengineering.

[45]  G. Buzsáki,et al.  Tools for probing local circuits: high-density silicon probes combined with optogenetics , 2015, Neuron.

[46]  E. Boyden,et al.  Multiple-Color Optical Activation, Silencing, and Desynchronization of Neural Activity, with Single-Spike Temporal Resolution , 2007, PloS one.

[47]  G. Buzsáki,et al.  Pyramidal Cell-Interneuron Interactions Underlie Hippocampal Ripple Oscillations , 2014, Neuron.

[48]  Allan R. Jones,et al.  A toolbox of Cre-dependent optogenetic transgenic mice for light-induced activation and silencing , 2012, Nature Neuroscience.

[49]  Karl Deisseroth,et al.  Optetrode: a multichannel readout for optogenetic control in freely moving mice , 2011, Nature Neuroscience.

[50]  Feng Zhang,et al.  Multimodal fast optical interrogation of neural circuitry , 2007, Nature.

[51]  Andrei Faraon,et al.  Patterned photostimulation via visible-wavelength photonic probes for deep brain optogenetics , 2016, Neurophotonics.

[52]  Pyramidal Cell , 2020, Definitions.

[53]  A. Zorzos,et al.  Multiwaveguide implantable probe for light delivery to sets of distributed brain targets. , 2010, Optics letters.

[54]  R. Boudreau,et al.  Fluxless die bonding for optoelectronics , 1993, Proceedings of IEEE 43rd Electronic Components and Technology Conference (ECTC '93).

[55]  E. Bamberg,et al.  Channelrhodopsin-2, a directly light-gated cation-selective membrane channel , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[56]  Zengcai V. Guo,et al.  Erratum: Procedures for Behavioral Experiments in Head-Fixed Mice (PLoS ONE (2014) 9, 2 (e88678) DOI:10.1371/journal.pone.0088678) , 2014 .

[57]  D. F. Knurek Reducing EMI in switch mode power supplies , 1988, 10th International Telecommunications Energy Conference.

[58]  Eran Stark,et al.  Diode probes for spatiotemporal optical control of multiple neurons in freely moving animals. , 2012, Journal of neurophysiology.

[59]  M. H. Pong,et al.  EMI due to electric field coupling on PCB , 1998, PESC 98 Record. 29th Annual IEEE Power Electronics Specialists Conference (Cat. No.98CH36196).

[60]  Michael A. Henninger,et al.  High-Performance Genetically Targetable Optical Neural Silencing via Light-Driven Proton Pumps , 2010 .

[61]  Matthew J. Byrd,et al.  Large-scale silicon nitride nanophotonic phased arrays at infrared and visible wavelengths. , 2017, Optics letters.

[62]  E. Bamberg,et al.  Light Activation of Channelrhodopsin-2 in Excitable Cells of Caenorhabditis elegans Triggers Rapid Behavioral Responses , 2005, Current Biology.

[63]  S. Masmanidis,et al.  Multisite silicon neural probes with integrated silicon nitride waveguides and gratings for optogenetic applications , 2016, Scientific Reports.

[64]  Anatol C. Kreitzer,et al.  Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry , 2010, Nature.

[65]  G. Buzsáki,et al.  Inhibition-Induced Theta Resonance in Cortical Circuits , 2013, Neuron.