Unconditional continuous-variable dense coding

We investigate the conditions under which unconditional dense coding can be achieved using continuous-variable entanglement. We consider the effect of entanglement impurity and detector efficiency and discuss experimental verification. We conclude that the requirements for a strong demonstration are not as stringent as previously thought, and are within the reach of present technology.

[1]  F. Konig,et al.  Photon-Number Squeezed Solitons from an Asymmetric Fiber-Optic Sagnac Interferometer , 1998 .

[2]  S. F. Pereira,et al.  Quantum Communication with Correlated Nonclassical States. , 2000, QELS 2000.

[3]  Karlsson,et al.  Use of quantum-noise correlation for noise reduction in semiconductor lasers. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[4]  D. Kilper,et al.  Polarization-dependent noise in photon-number squeezed light generated by quantum-well lasers. , 1996, Optics letters.

[5]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[6]  Yuen,et al.  Ultimate information carrying limit of quantum systems. , 1993, Physical review letters.

[7]  Samuel L. Braunstein,et al.  Dense coding for continuous variables , 1999, quant-ph/9910010.

[8]  Weinfurter,et al.  Dense coding in experimental quantum communication. , 1996, Physical review letters.

[9]  Charles H. Bennett,et al.  Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. , 1992, Physical review letters.

[10]  C. Xie,et al.  Quantum dense coding exploiting a bright Einstein-Podolsky-Rosen beam. , 2002, Physical review letters.

[11]  S. Barnett,et al.  Two-mode Squeezed Gaussons , 1993 .

[12]  Timothy C. Ralph,et al.  Teleportation with Bright Squeezed Light , 1998 .

[13]  T. Ralph,et al.  Squeezing more from a quantum nondemolition measurement , 2001 .

[14]  David E. McClelland,et al.  Optimization and transfer of vacuum squeezing from an optical parametric oscillator , 1999 .

[15]  C. Caves,et al.  Quantum limits on bosonic communication rates , 1994 .

[16]  Generation of continuous variable Einstein-Podolsky-Rosen entanglement via the Kerr nonlinearity in an optical fiber. , 2001, Physical review letters.

[17]  Claude E. Shannon,et al.  The mathematical theory of communication , 1950 .

[18]  H. Haus,et al.  Preparation, measurement and information capacity of optical quantum states , 1986 .