A Light‐Powered Bio‐Capacitor with Nanochannel Modulation

An artificial bio-capacitor system is established, consisting of the proton-pump protein proteorhodopsin and a modified alumina nanochannel, inspired by the capacitor-like behavior of plasma membranes realized through the cooperation of ion-pump and ion-channel proteins. Capacitor-like features of this simplified system are realized and identified, and the photocurrent duration time can be modulated by nanochannel modification to obtain favorable square-wave currents.

[1]  Lei Jiang,et al.  Highly-efficient gating of solid-state nanochannels by DNA supersandwich structure containing ATP aptamers: a nanofluidic IMPLICATION logic device. , 2012, Journal of the American Chemical Society.

[2]  Hirofumi Daiguji,et al.  Ion transport in nanofluidic channels , 2004 .

[3]  Xu Xiao,et al.  Paper-based supercapacitors for self-powered nanosystems. , 2012, Angewandte Chemie.

[4]  Pieter Stroeve,et al.  Lipid bilayer composition can influence the orientation of proteorhodopsin in artificial membranes. , 2013, Biophysical journal.

[5]  Lei Jiang,et al.  Energy Harvesting with Single‐Ion‐Selective Nanopores: A Concentration‐Gradient‐Driven Nanofluidic Power Source , 2010 .

[6]  R. MacKinnon,et al.  Principles of Selective Ion Transport in Channels and Pumps , 2005, Science.

[7]  I. Szleifer,et al.  Weak polyelectrolytes tethered to surfaces: Effect of geometry, acid–base equilibrium and electrical permittivity , 2006 .

[8]  Z. Blum,et al.  Self-Charging Electrochemical Biocapacitor , 2014 .

[9]  Paul Szymanski,et al.  Tailoring plasmonic and electrostatic field effects to maximize solar energy conversion by bacteriorhodopsin, the other natural photosynthetic system. , 2011, Nano letters.

[10]  Koji Sode,et al.  BioLC-Oscillator: A Self-Powered Wireless Glucose-Sensing System with the Glucose Dependent Resonance Frequency , 2012 .

[11]  Wei Guo,et al.  Biomimetic smart nanopores and nanochannels. , 2011, Chemical Society reviews.

[12]  E. Koonin,et al.  Bacterial rhodopsin: evidence for a new type of phototrophy in the sea. , 2000, Science.

[13]  Zhong Lin Wang,et al.  Hybrid cells for simultaneously harvesting multi-type energies for self-powered micro/nanosystems , 2012 .

[14]  R. A. Osteryoung,et al.  Square wave voltammetry , 1985 .

[15]  M. El-Sayed,et al.  Bacteriorhodopsin-based photo-electrochemical cell. , 2010, Biosensors & bioelectronics.

[16]  R. Birge,et al.  Green proteorhodopsin reconstituted into nanoscale phospholipid bilayers (nanodiscs) as photoactive monomers. , 2011, Journal of the American Chemical Society.

[17]  K. Kreuer On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells , 2001 .

[18]  Marion Leclerc,et al.  Proteorhodopsin phototrophy in the ocean , 2001, Nature.

[19]  Guang Zhu,et al.  Gallium nitride nanowire based nanogenerators and light-emitting diodes. , 2012, ACS nano.

[20]  Carlos Bustamante,et al.  Light-powering Escherichia coli with proteorhodopsin , 2007, Proceedings of the National Academy of Sciences.

[21]  Q. Ouyang,et al.  How the geometric configuration and the surface charge distribution influence the ionic current rectification in nanopores , 2007 .

[22]  Xu Hou,et al.  Bioinspired artificial single ion pump. , 2013, Journal of the American Chemical Society.

[23]  D. Chapman Biological membranes : physical fact and function , 1968 .

[24]  K. Srinivasan,et al.  Effect of nonsinusoidal periodic forces in Duffing oscillator: Numerical and analog simulation studies , 2009 .

[25]  Wei Guo,et al.  Asymmetric ion transport through ion-channel-mimetic solid-state nanopores. , 2013, Accounts of chemical research.

[26]  Zuzanna Siwy,et al.  Ionic selectivity of single nanochannels. , 2008, Nano letters.

[27]  Spin-current modulation and square-wave transmission through periodically stubbed electron waveguides , 2002, cond-mat/0204415.

[28]  Orlin D. Velev,et al.  Engineered deposition of coatings from nano- and micro-particles: A brief review of convective assembly at high volume fraction , 2007 .

[29]  Zhiqun Lin,et al.  Evaporation-induced self-assembly of nanoparticles from a sphere-on-flat geometry. , 2007, Angewandte Chemie.

[30]  J. Ong,et al.  Contact angle, protein adsorption and osteoblast precursor cell attachment to chitosan coatings bonded to titanium , 2003, Journal of biomaterials science. Polymer edition.

[31]  T. Moore,et al.  Mimicking photosynthetic solar energy transduction. , 2001, Accounts of chemical research.

[32]  S. Jiang,et al.  HPW/MCM‐41 Phosphotungstic Acid/Mesoporous Silica Composites as Novel Proton‐Exchange Membranes for Elevated‐Temperature Fuel Cells , 2010, Advanced materials.

[33]  Dmitry Pankratov,et al.  A hybrid electric power device for simultaneous generation and storage of electric energy , 2014 .

[34]  A. Mulkidjanian,et al.  Protons @ interfaces: implications for biological energy conversion. , 2006, Biochimica et biophysica acta.

[35]  Xu Hou,et al.  Learning from nature: building bio-inspired smart nanochannels. , 2009, ACS nano.

[36]  Zeng-Qiang Wu,et al.  Solution‐pH‐Modulated Rectification of Ionic Current in Highly Ordered Nanochannel Arrays Patterned with Chemical Functional Groups at Designed Positions , 2013 .

[37]  Xu Hou,et al.  Gating of single synthetic nanopores by proton-driven DNA molecular motors. , 2008, Journal of the American Chemical Society.

[38]  Yunfeng Lu,et al.  Evaporation-Induced Self-Assembly: Nanostructures Made Easy** , 1999 .

[39]  Chang Ming Li,et al.  Stationary current generated from photocycle of a hybrid bacteriorhodopsin/quantum dot bionanosystem , 2007 .

[40]  C. Dekker Solid-state nanopores. , 2007, Nature nanotechnology.

[41]  P. Renaud,et al.  Transport phenomena in nanofluidics , 2008 .

[42]  E. Bamberg,et al.  Photocurrents generated by bacteriorhodopsin on planar bilayer membranes , 1979, Biophysics of structure and mechanism.

[43]  Z. Siwy,et al.  Engineered voltage-responsive nanopores. , 2010, Chemical Society reviews.

[44]  Jin Zhai,et al.  Construction of biomimetic smart nanochannels with polymer membranes and application in energy conversion systems. , 2012, Physical chemistry chemical physics : PCCP.

[45]  Omar Azzaroni,et al.  Responsive polymers end-tethered in solid-state nanochannels: when nanoconfinement really matters. , 2010, Journal of the American Chemical Society.

[46]  Reinhard Neumann,et al.  Synthetic proton-gated ion channels via single solid-state nanochannels modified with responsive polymer brushes. , 2009, Nano letters.

[47]  Yan Xiang,et al.  A proteorhodopsin-based biohybrid light-powering pH sensor. , 2013, Physical chemistry chemical physics : PCCP.

[48]  G. R. Smith,et al.  Simulation approaches to ion channel structure–function relationships , 2001, Quarterly Reviews of Biophysics.

[49]  Masasuke Yoshida,et al.  Direct transmembraneous reconstitution of bacteriorhodopsin into planar phospholipid bilayers , 1993 .

[50]  W. Catterall,et al.  Structure and function of voltage-sensitive ion channels. , 1988, Science.

[51]  M. El-Sayed,et al.  Plasmonic field enhancement of the bacteriorhodopsin photocurrent during its proton pump photocycle. , 2010, Journal of the American Chemical Society.

[52]  David C. Gadsby,et al.  Ion channels versus ion pumps: the principal difference, in principle , 2009, Nature Reviews Molecular Cell Biology.

[53]  Wei Chen,et al.  Porous anodic alumina with continuously manipulated pore/cell size. , 2008, ACS nano.

[54]  J. Nianzhi,et al.  Proteorhodopsin - A new path for biological utilization of light energy in the sea , 2006 .

[55]  L. Illum,et al.  Chitosan and its use as a pharmaceutical excipient. , 1998, Pharmaceutical research.

[56]  Xu Hou,et al.  A biomimetic asymmetric responsive single nanochannel. , 2010, Journal of the American Chemical Society.

[57]  Peidong Yang,et al.  Nanofluidic diodes based on nanotube heterojunctions. , 2009, Nano letters.

[58]  S. L. Wright,et al.  Solute diffusion in poly(vinyl alcohol)/poly(acrylic acid) interpenetrating networks , 1996 .

[59]  Koji Sode,et al.  BioCapacitor--a novel category of biosensor. , 2009, Biosensors & bioelectronics.