Functional heterologous gap junctions in Fundulus ovarian follicles maintain meiotic arrest and permit hydration during oocyte maturation.

The physiological significance of heterologous gap junctions between granulosa cells and the oocyte was investigated in late vitellogenic ovarian follicles of the teleost Fundulus heteroclitus. Lucifer Yellow injected into the oocyte readily passed to the overlying granulosa cells, demonstrating effective dye-coupling. Passage of the fluorescent dye, and hence intercellular communication, was inhibited both by the tumor-promoting phorbol ester phorbol 12-myristate 13-acetate (PMA) and by 1-octanol, known uncouplers of gap junctions in a variety of invertebrate and vertebrate cell types. Octanol alone also initiated resumption of meiosis in follicle-enclosed oocytes, indicating that granulosa cells normally maintain meiotic arrest, as apparently occurs in mammalian and amphibian follicles. Both PMA and octanol also consistently inhibited the hydration process that normally accompanies meiotic maturation. These results support a previously suggested hypothesis that K+, which is the primary osmotic effector for oocyte hydration, is translocated via gap junction from granulosa cells to the maturing oocyte.