A residual based error estimator using radial basis functions
暂无分享,去创建一个
[1] J. Z. Zhu,et al. The superconvergent patch recovery and a posteriori error estimates. Part 2: Error estimates and adaptivity , 1992 .
[2] Ivo Babuška,et al. Analysis of the efficiency of an a posteriori error estimator for linear triangular finite elements , 1992 .
[3] J. Oden,et al. A unified approach to a posteriori error estimation using element residual methods , 1993 .
[4] Wolfram Volk,et al. From discrete element simulations to a continuum model , 2000 .
[5] E. Kansa,et al. Circumventing the ill-conditioning problem with multiquadric radial basis functions: Applications to elliptic partial differential equations , 2000 .
[6] O. C. Zienkiewicz,et al. The superconvergent patch recovery (SPR) and adaptive finite element refinement , 1992 .
[7] E. Kansa. Multiquadrics—A scattered data approximation scheme with applications to computational fluid-dynamics—I surface approximations and partial derivative estimates , 1990 .
[8] Kang Tai,et al. Radial point interpolation collocation method (RPICM) for partial differential equations , 2005 .
[9] Guirong Liu,et al. A meshfree radial point interpolation method (RPIM) for three-dimensional solids , 2005 .
[10] Gui-Rong Liu,et al. An Introduction to Meshfree Methods and Their Programming , 2005 .
[11] R. Franke. Scattered data interpolation: tests of some methods , 1982 .
[12] R. L. Hardy. Theory and applications of the multiquadric-biharmonic method : 20 years of discovery 1968-1988 , 1990 .
[13] K. Y. Dai,et al. A LINEARLY CONFORMING POINT INTERPOLATION METHOD (LC-PIM) FOR 2D SOLID MECHANICS PROBLEMS , 2005 .
[14] E. J. Kansa,et al. Multi-quadrics-a scattered data approximation scheme with applications to computational fluid dynamics-II , 1990 .
[15] Holger Wendland,et al. Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree , 1995, Adv. Comput. Math..
[16] YuanTong Gu,et al. A matrix triangularization algorithm for the polynomial point interpolation method , 2003 .
[17] Guirong Liu. Mesh Free Methods: Moving Beyond the Finite Element Method , 2002 .
[18] S. Timoshenko,et al. Theory of elasticity , 1975 .
[19] Guirong Liu,et al. On the optimal shape parameters of radial basis functions used for 2-D meshless methods , 2002 .
[20] E. Kansa. MULTIQUADRICS--A SCATTERED DATA APPROXIMATION SCHEME WITH APPLICATIONS TO COMPUTATIONAL FLUID-DYNAMICS-- II SOLUTIONS TO PARABOLIC, HYPERBOLIC AND ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS , 1990 .
[21] I. Babuska,et al. A‐posteriori error estimates for the finite element method , 1978 .
[22] Ted Belytschko,et al. Superconvergent patch recovery with equilibrium and conjoint interpolant enhancements , 1994 .
[23] Guirong Liu. Meshfree Methods: Moving Beyond the Finite Element Method, Second Edition , 2009 .
[24] Gui-Rong Liu,et al. A regularized least-squares radial point collocation method (RLS-RPCM) for adaptive analysis , 2007 .
[25] Alvaro L. G. A. Coutinho,et al. A posteriori error estimate for stress analysis of homogeneous and heterogeneous materials: an engineering approach , 2005 .
[26] Nils-Erik Wiberg,et al. Enhanced Superconvergent Patch Recovery incorporating equilibrium and boundary conditions , 1994 .
[27] Guirong Liu,et al. A LOCAL RADIAL POINT INTERPOLATION METHOD (LRPIM) FOR FREE VIBRATION ANALYSES OF 2-D SOLIDS , 2001 .
[28] J. Z. Zhu,et al. The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique , 1992 .
[29] Nils-Erik Wiberg,et al. Patch recovery based on superconvergent derivatives and equilibrium , 1993 .
[30] O. C. Zienkiewicz,et al. A simple error estimator and adaptive procedure for practical engineerng analysis , 1987 .