Mobile Sensor Network Navigation Using Gaussian Processes With Truncated Observations

In this paper, we consider mobile sensor networks that use spatiotemporal Gaussian processes to predict a wide range of spatiotemporal physical phenomena. Nonparametric Gaussian process regression that is based on truncated observations is proposed for mobile sensor networks with limited memory and computational power. We first provide a theoretical foundation of Gaussian process regression with truncated observations. In particular, we demonstrate that prediction using all observations can be well approximated by prediction using truncated observations under certain conditions. Inspired by the analysis, we then propose a centralized navigation strategy for mobile sensor networks to move in order to reduce prediction error variances at points of interest. For the case in which each agent has a limited communication range, we propose a distributed navigation strategy. Particularly, we demonstrate that mobile sensing agents with the distributed navigation strategy produce an emergent, swarming-like, collective behavior for communication connectivity and are coordinated to improve the quality of the collective prediction capability.

[1]  W. Rudin Principles of mathematical analysis , 1964 .

[2]  Olvi L. Mangasarian,et al.  Nonlinear Programming , 1969 .

[3]  N. Cressie Kriging Nonstationary Data , 1986 .

[4]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[5]  Robert Haining,et al.  Statistics for spatial data: by Noel Cressie, 1991, John Wiley & Sons, New York, 900 p., ISBN 0-471-84336-9, US $89.95 , 1993 .

[6]  Dimitri P. Bertsekas,et al.  Nonlinear Programming , 1997 .

[7]  M. Gibbs,et al.  Efficient implementation of gaussian processes , 1997 .

[8]  C. R. Dietrich,et al.  Fast and Exact Simulation of Stationary Gaussian Processes through Circulant Embedding of the Covariance Matrix , 1997, SIAM J. Sci. Comput..

[9]  F. J. Alonso,et al.  The Kriged Kalman filter , 1998 .

[10]  Volker Tresp,et al.  A Bayesian Committee Machine , 2000, Neural Computation.

[11]  Alexander J. Smola,et al.  Sparse Greedy Gaussian Process Regression , 2000, NIPS.

[12]  Christopher K. I. Williams,et al.  Using the Nyström Method to Speed Up Kernel Machines , 2000, NIPS.

[13]  Peter Sollich,et al.  Learning Curves for Gaussian Process Regression: Approximations and Bounds , 2001, Neural Computation.

[14]  Neil D. Lawrence,et al.  Fast Sparse Gaussian Process Methods: The Informative Vector Machine , 2002, NIPS.

[15]  Matthias W. Seeger,et al.  Bayesian Gaussian process models : PAC-Bayesian generalisation error bounds and sparse approximations , 2003 .

[16]  Jie Lin,et al.  Coordination of groups of mobile autonomous agents using nearest neighbor rules , 2003, IEEE Trans. Autom. Control..

[17]  Christopher K. I. Williams,et al.  Upper and Lower Bounds on the Learning Curve for Gaussian Processes , 2000, Machine Learning.

[18]  Randal W. Beard,et al.  Consensus seeking in multiagent systems under dynamically changing interaction topologies , 2005, IEEE Transactions on Automatic Control.

[19]  C. Guestrin,et al.  Near-optimal sensor placements: maximizing information while minimizing communication cost , 2006, 2006 5th International Conference on Information Processing in Sensor Networks.

[20]  Reza Olfati-Saber,et al.  Flocking for multi-agent dynamic systems: algorithms and theory , 2006, IEEE Transactions on Automatic Control.

[21]  Andreas Krause,et al.  Efficient Planning of Informative Paths for Multiple Robots , 2006, IJCAI.

[22]  Naomi Ehrich Leonard,et al.  Collective Motion, Sensor Networks, and Ocean Sampling , 2007, Proceedings of the IEEE.

[23]  George J. Pappas,et al.  Distributed connectivity control of mobile networks , 2007, 2007 46th IEEE Conference on Decision and Control.

[24]  J. Cortés Discontinuous dynamical systems , 2008, IEEE Control Systems.

[25]  Joonho Lee,et al.  Biologically-inspired navigation strategies for swarm intelligence using spatial Gaussian processes , 2008 .

[26]  George J. Pappas,et al.  Dynamic Assignment in Distributed Motion Planning With Local Coordination , 2008, IEEE Transactions on Robotics.

[27]  Randy A. Freeman,et al.  Decentralized Environmental Modeling by Mobile Sensor Networks , 2008, IEEE Transactions on Robotics.

[28]  Iain Murray,et al.  Introduction to Gaussian Processes , 2008 .

[29]  Andreas Krause,et al.  Near-Optimal Sensor Placements in Gaussian Processes: Theory, Efficient Algorithms and Empirical Studies , 2008, J. Mach. Learn. Res..

[30]  Joonho Lee,et al.  Swarm intelligence for achieving the global maximum using spatio-temporal Gaussian processes , 2008, 2008 American Control Conference.

[31]  Jongeun Choi,et al.  Distributed learning and cooperative control for multi-agent systems , 2009, Autom..

[32]  Jorge Cortés,et al.  Distributed Kriged Kalman Filter for Spatial Estimation , 2009, IEEE Transactions on Automatic Control.

[33]  Hugh F. Durrant-Whyte,et al.  Decentralised decision making in heterogeneous teams using anonymous optimisation , 2009, Robotics Auton. Syst..

[34]  Carl E. Rasmussen,et al.  Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.

[35]  Jongeun Choi,et al.  Adaptive Sampling for Learning Gaussian Processes Using Mobile Sensor Networks , 2011, Sensors.