Analysis, Adaptive Control and Synchronization of a Seven - Term Novel 3 - D Chaotic System with Three Quadratic Nonlinearities and its Digital Implementation in LabVIEW

First, this paper introduces a seven-term novel 3-D chaotic system and discusses its qualitative properties. The proposed system is a seven-term novel polynomial chaotic system with three quadratic nonlinearities. The Lyapunov exponents of the novel chaotic system are obtained as L1 = 3.3226, L2 = 0 and L3 = –30.3406. The maximal Lyapunov exponent (MLE) for the novel chaotic system is obtained as L1 = 3.3226 and Lyapunov dimension as DL = 2.1095. Next, we derive new results for the adaptive control design of the novel chaotic system with unknown parameters. Next, we derive new results for the adaptive synchronization design of the identical novel chaotic systems with unknown parameters. The adaptive control and synchronization results have been established using adaptive control theory and Lyapunov stability theory. Numerical simulations with MATLAB have been shown to validate and illustrate all the new results derived in this paper.

[1]  M. Lakshmanan,et al.  Chaos in Nonlinear Oscillators: Controlling and Synchronization , 1996 .

[2]  Guoliang Cai,et al.  Chaos Synchronization of a New Chaotic System via Nonlinear Control , 2007 .

[3]  Robert Shaw Strange Attractors, Chaotic Behavior, and Information Flow , 1981 .

[4]  Wei Pan,et al.  Using polarization properties to enhance performance of chaos synchronization communication between vertical-cavity surface-emitting lasers , 2010 .

[5]  Jun-an Lu,et al.  Parameter identification and backstepping control of uncertain Lü system , 2003 .

[6]  Dequan Li,et al.  A three-scroll chaotic attractor , 2008 .

[7]  Sundarapandian Vaidyanathan,et al.  Hybrid Synchronization of n-scroll Chaotic Chua Circuits using Adaptive Backstepping Control Design with Recursive Feedback , 2013 .

[8]  Jinhu Lu,et al.  A New Chaotic Attractor Coined , 2002, Int. J. Bifurc. Chaos.

[9]  Dr. V. Sundarapandian,et al.  Global Chaos Synchronization of Hyperchaotic Liu and Hyperchaotic Chen Systems by Active Nonlinear Control , 2011 .

[10]  V. Sundarapan,et al.  Sliding Controller Design of Hybrid Synchronization of Four-Wing Chaotic Systems , 2011 .

[11]  M. Lakshmanan,et al.  SECURE COMMUNICATION USING A COMPOUND SIGNAL USING SAMPLED-DATA FEEDBACK , 2003 .

[12]  Yoshihiko Nakamura,et al.  The chaotic mobile robot , 1997, Proceedings 1999 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human and Environment Friendly Robots with High Intelligence and Emotional Quotients (Cat. No.99CH36289).

[13]  Sundarapandian Vaidyanathan Output Regulation of Sprott-I Chaotic System by State Feedback Control , 2012 .

[14]  A. Fuller,et al.  Stability of Motion , 1976, IEEE Transactions on Systems, Man, and Cybernetics.

[15]  O. Rössler An equation for continuous chaos , 1976 .

[16]  Kun Soo Chang,et al.  Applications of chaos and fractals in process systems engineering , 1996 .

[17]  Jack J Jiang,et al.  Chaos in voice, from modeling to measurement. , 2006, Journal of voice : official journal of the Voice Foundation.

[18]  Louis M Pecora,et al.  Synchronization of chaotic systems. , 2015, Chaos.

[19]  Edward Ott,et al.  Controlling chaos , 2006, Scholarpedia.

[20]  Sundarapandian Vaidyanathan,et al.  Hybrid synchronization of n–scroll Chua and Lur’e chaotic systems via backstepping control with novel feedback , 2012 .

[21]  Hsien-Keng Chen,et al.  Anti-control of chaos in rigid body motion , 2004 .

[22]  G. Tigan,et al.  Analysis of a 3D chaotic system , 2006, math/0608568.

[23]  Emilio Del-Moral-Hernandez,et al.  Chaotic Neural Networks , 2009, Encyclopedia of Artificial Intelligence.

[24]  Ju H. Park,et al.  A novel criterion for delayed feedback control of time-delay chaotic systems , 2005 .

[25]  Tao Yang Control of Chaos Using Sampled-Data Feedback Control , 1998 .

[26]  Hsien-Keng Chen,et al.  Global chaos synchronization of new chaotic systems via nonlinear control , 2005 .

[27]  Pierre Degond,et al.  Kinetic hierarchy and propagation of chaos in biological swarm models , 2013 .

[28]  Ljupco Kocarev,et al.  A chaos-based approach to the design of cryptographically secure substitutions , 2005 .

[29]  I. Suárez,et al.  Mastering chaos in ecology , 1999 .

[30]  Shrinivas Lankalapalli,et al.  Chaos in Robot Control Equations , 1997 .

[31]  Utz Wever,et al.  Application of the Polynomial Chaos Expansion to the simulation of chemical reactors with uncertainties , 2012, Math. Comput. Simul..

[32]  Yanqiu Che,et al.  Chaos control and synchronization of two neurons exposed to ELF external electric field , 2007 .

[33]  Louis M. Pecora,et al.  Synchronizing chaotic circuits , 1991 .

[34]  Suochun Zhang,et al.  Adaptive backstepping synchronization of uncertain chaotic system , 2004 .

[35]  Kazuyuki Murase,et al.  Chaotic dynamics of a behavior-based miniature mobile robot: effects of environment and control structure , 2005, Neural Networks.

[36]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[37]  Xin Zhang,et al.  A new chaotic algorithm for image encryption , 2006 .

[38]  R. S. Fyath,et al.  Investigation of chaos synchronization in photonic crystal lasers , 2012 .

[39]  Yong Wang,et al.  A new chaos-based fast image encryption algorithm , 2011, Appl. Soft Comput..

[40]  S. Bowong Adaptive synchronization between two different chaotic dynamical systems , 2007 .

[41]  Ichiro Tsuda,et al.  Dynamic link of memory--Chaotic memory map in nonequilibrium neural networks , 1992, Neural Networks.

[42]  Junqi Yang,et al.  Synchronization for chaotic systems and chaos-based secure communications via both reduced-order and step-by-step sliding mode observers , 2013, Commun. Nonlinear Sci. Numer. Simul..

[43]  Vaidyanathan Sundarapandian,et al.  Adaptive Control and Synchronization Design for the Lu-Xiao Chaotic System , 2013 .

[44]  Bernd Blasius,et al.  Complex dynamics and phase synchronization in spatially extended ecological systems , 1999, Nature.

[45]  T. Shimizu,et al.  On the bifurcation of a symmetric limit cycle to an asymmetric one in a simple model , 1980 .

[46]  Sundarapandian Vaidyanathan,et al.  ACTIVE CONTROLLER DESIGN FOR THE HYBRID SYNCHRONIZATION OF HYPERCHAOTIC ZHENG AND HYPERCHAOTIC YU SYSTEMS , 2013, SOCO 2013.

[47]  Dr. V. Sundarapandian Output Regulation of the Tigan System , 2011 .

[48]  Lilian Huang,et al.  Synchronization of chaotic systems via nonlinear control , 2004 .

[49]  L. Kocarev Chaos-based cryptography: a brief overview , 2001 .

[50]  J. Yorke,et al.  Chaos: An Introduction to Dynamical Systems , 1997 .

[51]  B. John Oommen,et al.  Logistic Neural Networks: Their chaotic and pattern recognition properties , 2014, Neurocomputing.

[52]  Nan Li,et al.  Synchronization for general complex dynamical networks with sampled-data , 2011, Neurocomputing.

[53]  V. Sundarapandian,et al.  Analysis, control, synchronization, and circuit design of a novel chaotic system , 2012, Math. Comput. Model..

[54]  Sundarapandian Vaidyanathan,et al.  ACTIVE CONTROLLER DESIGN FOR THE H YBRID SYNCHRONIZATION OF H YPERCHAOTIC XU AND H YPERCHAOTIC LISYSTEMS , 2013 .

[55]  M. Feki An adaptive chaos synchronization scheme applied to secure communication , 2003 .

[56]  Y. Kuramoto,et al.  Dephasing and bursting in coupled neural oscillators. , 1995, Physical review letters.