From Open Quantum Systems to Open Quantum Maps

For a class of quantized open chaotic systems satisfying a natural dynamical assumption we show that the study of the resolvent, and hence of scattering and resonances, can be reduced to the study of a family of open quantum maps, that is of finite dimensional operators obtained by quantizing the Poincaré map associated with the flow near the set of trapped trajectories.

[1]  T. Prosen General quantum surface-of-section method , 1995, chao-dyn/9502009.

[2]  J. Bony,et al.  Espaces fonctionnels associés au calcul de Weyl-Hörmander , 1994 .

[3]  J. Sjoestrand,et al.  Elementary linear algebra for advanced spectral problems , 2003, math/0312166.

[4]  G. Berkolaiko The Mathematical Aspects of Quantum Maps , 2003 .

[5]  S. Rice,et al.  Semiclassical quantization of the scattering from a classically chaotic repellor , 1989 .

[6]  Distribution of Resonances for Open Quantum Maps , 2005, math-ph/0505034.

[7]  P. Walters,et al.  Expansive one-parameter flows , 1972 .

[8]  J. Sjöstrand A Trace Formula and Review of Some Estimates for Resonances , 1997 .

[9]  L. Hörmander,et al.  The Analysis of Linear Partial Differential Operators IV , 1985 .

[10]  M. Zworski,et al.  Fractal Weyl laws in discrete models of chaotic scattering , 2005, math-ph/0506045.

[11]  P. H. Müller,et al.  L. Hörmander, Linear Partial Differential Operators. VIII + 284 S. m. 1 Fig. Berlin/Göttingen/Heidelberg 1963. Springer-Verlag. Preis geb. DM 42,- . , 1964 .

[12]  G. Vattay,et al.  A Fredholm determinant for semiclassical quantization. , 1993, Chaos.

[13]  N. Balazs,et al.  The Quantized Baker's Transformation , 1987 .

[14]  Andrew Hassell,et al.  Strichartz Estimates Without Loss on Manifolds with Hyperbolic Trapped Geodesics , 2009, 0907.3545.

[15]  A. Voros Unstable periodic orbits and semiclassical quantisation , 1988 .

[16]  Mouez Dimassi,et al.  Spectral asymptotics in the semi-classical limit , 1999 .

[17]  Maciej Zworski,et al.  From quasimodes to resonances , 1998 .

[18]  J. Sjoestrand Eigenvalue distribution for non-self-adjoint operators with small multiplicative random perturbations , 2008, 0802.3584.

[19]  M. Zworski,et al.  Fractal Weyl law for open quantum chaotic maps , 2011, 1105.3128.

[20]  J. Zukas Introduction to the Modern Theory of Dynamical Systems , 1998 .

[21]  Jorge V. José,et al.  Chaos in classical and quantum mechanics , 1990 .

[22]  Celso Grebogi,et al.  Wada Basin Boundaries in Chaotic Scattering , 1996 .

[23]  Ivana Alexandrova Semi-Classical Wavefront Set and Fourier Integral Operators , 2008, Canadian Journal of Mathematics.

[24]  M. Rubin,et al.  Resonant eigenstates for a quantized chaotic system , 2007 .

[25]  Prangé,et al.  Fredholm theory for quasiclassical scattering. , 1995, Physical review letters.

[26]  Henning Schomerus,et al.  Quantum-to-classical crossover of quasibound states in open quantum systems. , 2004, Physical review letters.

[27]  J. Sjöstrand,et al.  Semiclassical resonances generated by a closed trajectory of hyperbolic type , 1987 .

[28]  Bernard Helffer,et al.  Résonances en limite semi-classique , 1986 .

[29]  R. Ramaswamy,et al.  Semiclassical quantization of multidimensional systems , 1980 .

[30]  J. Combes,et al.  A class of analytic perturbations for one-body Schrödinger Hamiltonians , 1971 .

[31]  C. Beenakker,et al.  Dynamical model for the quantum-to-classical crossover of shot noise , 2003, cond-mat/0304327.

[32]  André Martinez Resonance Free Domains for Non Globally Analytic Potentials , 2002 .

[33]  M. Zworski,et al.  Quantum decay rates in chaotic scattering , 2007, 0706.3242.

[34]  L. Hörmander The analysis of linear partial differential operators , 1990 .

[35]  Shepelyansky,et al.  Statistics of quantum lifetimes in a classically chaotic system. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[36]  M. Zworski,et al.  Quantum monodromy and semi-classical trace formulæ , 2002 .

[37]  Quantum monodromy and semi-classical trace formulae , 2001, math/0108052.

[38]  C. Gérard Asymptotique des pôles de la matrice de scattering pour deux obstacles strictement convexes , 1986 .

[39]  J. Sjöstrand Geometric bounds on the density of resonances for semiclassical problems , 1990 .

[40]  U. Smilansky,et al.  A scattering approach to the quantization of Hamiltonians in two dimensions-application to the wedge billiard , 1995 .

[41]  V. Petkov,et al.  Semi-classical Estimates on the Scattering Determinant , 2001 .

[42]  Jan Awrejcewicz,et al.  Bifurcation and Chaos , 1995 .

[43]  R. O. Vallejos,et al.  The quantized D-transformation. , 1996, Chaos.

[44]  Maciej Zworski,et al.  Complex scaling and the distribution of scattering poles , 1991 .

[45]  M. Dimassi,et al.  Spectral Asymptotics in the Semi-Classical Limit: Frontmatter , 1999 .

[46]  U. Smilansky,et al.  Semiclassical quantization of chaotic billiards: a scattering theory approach , 1992 .

[47]  Quantum mechanics and semiclassics of hyperbolic n-disk scattering systems , 1997, chao-dyn/9712015.

[48]  M. Zworski,et al.  Fractal upper bounds on the density of semiclassical resonances , 2005 .