LES of an inclined sonic jet into a turbulent crossflow at Mach 3.6

We have performed large-eddy simulation with subgrid scale (LES-SGS) stretched-vortex model of an inclined sonic jet into a supersonic crossflow at Mach 3.6. The main flow features generated by the gas-dynamic interactions of the jet with the supersonic crossflow, such as barrel shock, shear layer, and counter-rotating vortex pair, are numerically captured by the employed LES-SGS. The transition and spatial development of the jet into a supersonic crossflow have been shown to be strongly dependent on the inflow conditions of the crossflow. This result indicates that correct turbulent inflow conditions are necessary to predict the main flow characteristics, dispersion and mixing of a gaseous jet in a supersonic, turbulent crossflow using LES-SGS. This work presents a methodology for the generation of realistic synthetic turbulent inflow conditions for LES of spatially developing, supersonic, turbulent, wall-bounded flows. The methodology is applied to the study of a supersonic turbulent flow over a flat wall interacting with an inclined jet. The effects of inflow conditions on the spatial development of the inclined jet are discussed, and then the results are compared with the available experimental data. Also, the dominant vortical structures generated by the jet/turbulent boundary layer interaction are identified as sheets, tilted tubes and discontinuous rings, and a visualization of their spatiotemporal development is provided. The identified vortical structures are shown to be enveloped by the helium mass-fraction isosurface, thus showing the important role of those structures in the dispersion of a gaseous jet in a supersonic crossflow.

[1]  L. Prandtl 7. Bericht über Untersuchungen zur ausgebildeten Turbulenz , 1925 .

[2]  D. Coles The law of the wake in the turbulent boundary layer , 1956, Journal of Fluid Mechanics.

[3]  A. Walz,et al.  Boundary layers of flow and temperature , 1969 .

[4]  Yasuhiro Kamotani,et al.  Experiments on a Turbulent Jet in a Cross Flow , 1972 .

[5]  C. J. Schexnayder,et al.  Influence of Chemical Kinetics and Unmixedness on Burning in Supersonic Hydrogen Flames , 1980 .

[6]  T. Lundgren,et al.  Strained spiral vortex model for turbulent fine structure , 1982 .

[7]  M. Berger,et al.  Adaptive mesh refinement for hyperbolic partial differential equations , 1982 .

[8]  P. Spalart Direct simulation of a turbulent boundary layer up to Rθ = 1410 , 1988, Journal of Fluid Mechanics.

[9]  A. Roshko,et al.  The compressible turbulent shear layer: an experimental study , 1988, Journal of Fluid Mechanics.

[10]  P. Dimotakis Turbulent Free Shear Layer Mixing and Combustion , 1991 .

[11]  K. Thompson Time-dependent boundary conditions for hyperbolic systems, II , 1990 .

[12]  Steven A. Orszag,et al.  Intermittent vortex structures in homogeneous isotropic turbulence , 1990, Nature.

[13]  M. Lesieur,et al.  Spectral large-eddy simulation of isotropic and stably stratified turbulence , 1992, Journal of Fluid Mechanics.

[14]  S.N.B. Murthy,et al.  Turbulent Free Shear Layer Mixing and Combustion , 1991 .

[15]  T. Poinsot Boundary conditions for direct simulations of compressible viscous flows , 1992 .

[16]  P. Moin,et al.  Simulation of spatially evolving turbulence and the applicability of Taylor's hypothesis in compressible flow , 1992 .

[17]  J. Hermanson,et al.  Mie scattering imaging of a transverse, sonic jet in supersonic flow , 1993 .

[18]  S. Osher,et al.  Weighted essentially non-oscillatory schemes , 1994 .

[19]  D. I. Pullin,et al.  Reynolds stresses and one‐dimensional spectra for a vortex model of homogeneous anisotropic turbulence , 1994 .

[20]  A. Roshko,et al.  Vortical structure in the wake of a transverse jet , 1994, Journal of Fluid Mechanics.

[21]  Jinhee Jeong,et al.  On the identification of a vortex , 1995, Journal of Fluid Mechanics.

[22]  S. Ghosal An Analysis of Numerical Errors in Large-Eddy Simulations of Turbulence , 1996 .

[23]  Alexander J. Smits,et al.  Turbulent Shear Layers in Supersonic Flow , 1996 .

[24]  Chi-Wang Shu,et al.  Efficient Implementation of Weighted ENO Schemes , 1995 .

[25]  D. Pullin,et al.  A vortex-based subgrid stress model for large-eddy simulation , 1997 .

[26]  M. Kurosaka,et al.  Kidney and anti-kidney vortices in crossflow jets , 1997, Journal of Fluid Mechanics.

[27]  J. C. Dutton,et al.  Compressibility effects in supersonic transverse injection flowfields , 1997 .

[28]  T. Lund,et al.  Generation of Turbulent Inflow Data for Spatially-Developing Boundary Layer Simulations , 1998 .

[29]  S. Osher,et al.  A Non-oscillatory Eulerian Approach to Interfaces in Multimaterial Flows (the Ghost Fluid Method) , 1999 .

[30]  E. V. Lavante,et al.  Numerical simulation of supersonic air flow with transverse hydrogen injection , 1999 .

[31]  D. Pullin A vortex-based model for the subgrid flux of a passive scalar , 2000 .

[32]  Tobias Voelkl,et al.  A physical-space version of the stretched-vortex subgrid-stress model for large-eddy simulation of incompressible flow , 2000 .

[33]  Robert P. Lucht,et al.  Mixing of a Sonic Transverse Jet Injected into a Supersonic Flow , 2000 .

[34]  S. Pope Turbulent Flows: FUNDAMENTALS , 2000 .

[35]  Robert D. Moser,et al.  Direct numerical simulation of a supersonic turbulent boundary layer at Mach 2.5 , 2000, Journal of Fluid Mechanics.

[36]  Chi-Wang Shu,et al.  Strong Stability-Preserving High-Order Time Discretization Methods , 2001, SIAM Rev..

[37]  E. von Lavante,et al.  Numerical Simulation of Supersonic Airflow with Transverse Hydrogen Injection , 2001 .

[38]  Doyle Knight,et al.  Large-Eddy Simulation of a Supersonic Boundary Layer Using an Unstructured Grid , 2001 .

[39]  T. Lundgren,et al.  Axial motion and scalar transport in stretched spiral vortices , 2001 .

[40]  Chi-Wang Shu,et al.  High order time discretization methods with the strong stability property , 2001 .

[41]  B. Kosović,et al.  Subgrid-scale modeling for large-eddy simulations of compressible turbulence , 2002 .

[42]  E. R. V. Driest,et al.  Turbulent Boundary Layer in Compressible Fluids , 2003 .

[43]  Nikolaus A. Adams,et al.  Large-eddy simulation of high-Reynolds-number supersonic boundary layers using the approximate deconvolution model and a rescaling and recycling technique , 2003 .

[44]  W.,et al.  Time Dependent Boundary Conditions for Hyperbolic Systems , 2003 .

[45]  Ralf Deiterding,et al.  Parallel adaptive simulation of multi-dimensional detonation structures , 2003 .

[46]  H. Michel,et al.  Spectral dynamics in the B800 band of LH2 from Rhodospirillum molischianum: a single-molecule study , 2004 .

[47]  S. Pope Ten questions concerning the large-eddy simulation of turbulent flows , 2004 .

[48]  Antonino Ferrante,et al.  A robust method for generating inflow conditions for direct simulations of spatially-developing turbulent boundary layers , 2004 .

[49]  M. Pino Martin,et al.  Assessment of inflow boundary conditions for compressible turbulent boundary layers , 2004 .

[50]  D. Pullin,et al.  Hybrid tuned center-difference-WENO method for large eddy simulations in the presence of strong shocks , 2004 .

[51]  Andrew W. Cook,et al.  Short Note: Hyperviscosity for shock-turbulence interactions , 2005 .

[52]  Antonino Ferrante,et al.  Reynolds number effect on drag reduction in a microbubble-laden spatially developing turbulent boundary layer , 2005, Journal of Fluid Mechanics.

[53]  Luca Maddalena,et al.  Experimental and computational investigation of light-gas injectors in mach 4.0 crossflow , 2006 .

[54]  Simulation of injection into a supersonic crossflow using des with synthetic inflow , 2006 .

[55]  Dale Pullin,et al.  Large-eddy simulation and multiscale modelling of a Richtmyer–Meshkov instability with reshock , 2006, Journal of Fluid Mechanics.

[56]  D. Knight Inflow Boundary Conditions for DNS and LES of Compressible Turbulent Boundary Layers , 2006 .

[57]  Ralf Deiterding,et al.  A low-numerical dissipation, patch-based adaptive-mesh-refinement method for large-eddy simulation of compressible flows , 2006 .

[58]  Ronald K. Hanson,et al.  Time evolution and mixing characteristics of hydrogen and ethylene transverse jets in supersonic crossflows , 2006 .

[59]  S. Lele,et al.  Numerical Investigation of a Transverse Jet in a Supersonic Crossflow Using Large Eddy Simulation , 2006 .

[60]  G. Candler,et al.  Assessment of Synthetic Inflow Generation for Simulating Injection Into a Supersonic Crossflow , 2006 .

[61]  Sanjiva K. Lele,et al.  An artificial nonlinear diffusivity method for supersonic reacting flows with shocks , 2005, J. Comput. Phys..

[62]  Ralf Deiterding,et al.  A low numerical dissipation patch-based adaptive mesh refinement method for large-eddy simulation of compressible flows , 2007, J. Comput. Phys..

[63]  M. Lombardini,et al.  Richtmyer-Meshkov Instability in Converging Geometries , 2008 .

[64]  G. Matheou Large-eddy simulation of molecular mixing in a recirculating shear flow , 2008 .

[65]  P. Dimotakis,et al.  On the effects of the upstream conditions on the transition of an inclined jet into a supersonic cross-flow , 2009 .

[66]  Paul E. Dimotakis,et al.  Large-eddy simulation of mixing in a recirculating shear flow , 2010, Journal of Fluid Mechanics.

[67]  M. Kopera Direct numerical simulation of turbulent flow over a backward-facing step , 2011 .