The $\mathbf{Q}$-tensor Model with Uniaxial Constraint

This chapter is about the modeling of nematic liquid crystals (LCs) and their numerical simulation. We begin with an overview of the basic physics of LCs and discuss some of their many applications. Next, we delve into the modeling arguments needed to obtain macroscopic order parameters which can be used to formulate a continuum model. We then survey different continuum descriptions, namely the Oseen-Frank, Ericksen, and Landau-deGennes ($\mathbf{Q}$-tensor) models, which essentially model the LC material like an anisotropic elastic material. In particular, we review the mathematical theory underlying the three different continuum models and highlight the different trade-offs of using these models. Next, we consider the numerical simulation of these models with a survey of various methods, with a focus on the Ericksen model. We then show how techniques from the Ericksen model can be combined with the Landau-deGennes model to yield a $\mathbf{Q}$-tensor model that exactly enforces uniaxiality, which is relevant for modeling many nematic LC systems. This is followed by an in-depth numerical analysis, using tools from $\Gamma$-convergence, to justify our discrete method. We also show several numerical experiments and comparisons with the standard Landau-deGennes model.

[1]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[2]  W. Brinkman,et al.  Defects in liquid crystals , 1982 .

[3]  C. Zannoni,et al.  Shape, chirality and internal order of freely suspended nematic nanodroplets , 2012 .

[4]  Friedrich Reinitzer,et al.  Beiträge zur Kenntniss des Cholesterins , 1888 .

[5]  Chun Liu,et al.  Time Evolution of Nematic Liquid Crystals with Variable Degree of Orientation , 2002, SIAM J. Math. Anal..

[6]  Arghir Zarnescu,et al.  Refined approximation for minimizers of a Landau-de Gennes energy functional , 2010, 1006.5689.

[7]  Sluckin,et al.  Novel surface phase transition in nematic liquid crystals: Wetting and the Kosterlitz-Thouless transition. , 1985, Physical review letters.

[8]  Sören Bartels,et al.  Simulation of Q-Tensor Fields with Constant Orientational Order Parameter in the Theory of Uniaxial Nematic Liquid Crystals , 2014 .

[9]  Apala Majumdar,et al.  Landau–De Gennes Theory of Nematic Liquid Crystals: the Oseen–Frank Limit and Beyond , 2008, 0812.3131.

[10]  Robert A. Hayes,et al.  Liquid behavior inside a reflective display pixel based on electrowetting , 2004 .

[11]  Miha Ravnik,et al.  Landau–de Gennes modelling of nematic liquid crystal colloids , 2009 .

[12]  Juan Vicente Gutiérrez-Santacreu,et al.  A linear mixed finite element scheme for a nematic Ericksen–Leslie liquid crystal model , 2013 .

[13]  Nigel J. Mottram,et al.  Introduction to Q-tensor theory , 2014, 1409.3542.

[14]  Sören Bartels,et al.  Stability and Convergence of Finite-Element Approximation Schemes for Harmonic Maps , 2005, SIAM J. Numer. Anal..

[15]  M. Burger A framework for the construction of level set methods for shape optimization and reconstruction , 2003 .

[16]  J. Lagerwall,et al.  A new era for liquid crystal research: Applications of liquid crystals in soft matter nano-, bio- and microtechnology , 2012 .

[17]  Apala Majumdar,et al.  Nematic Liquid Crystals: From Maier-Saupe to a Continuum Theory , 2010 .

[18]  F. Lin,et al.  Nonparabolic dissipative systems modeling the flow of liquid crystals , 1995 .

[19]  P. Biscari,et al.  Ordering effects in electric splay Freedericksz transitions , 2007 .

[20]  Jean-Michel Coron,et al.  Harmonic maps with defects , 1986 .

[21]  Satyendra Kumar,et al.  Biaxial nematic phase in bent-core thermotropic mesogens. , 2004, Physical review letters.

[22]  Fanghua Lin,et al.  On nematic liquid crystals with variable degree of orientation , 1991 .

[23]  Sophia Blau,et al.  Analysis Of The Finite Element Method , 2016 .

[24]  Gerhard A. Holzapfel,et al.  Nonlinear Solid Mechanics: A Continuum Approach for Engineering Science , 2000 .

[25]  Xiaofeng Yang,et al.  Numerical approximations of Allen-Cahn and Cahn-Hilliard equations , 2010 .

[26]  Friedrich Reinitzer Contributions to the knowledge of cholesterol , 1989 .

[27]  S. Yau,et al.  Lectures on Harmonic Maps , 1997 .

[28]  A. Saupe,et al.  Observation of a Biaxial Nematic Phase in Potassium Laurate-1-Decanol-Water Mixtures , 1980 .

[29]  Andrea Braides Local Minimization as a Selection Criterion , 2014 .

[30]  A. Onuki,et al.  Defect structures in nematic liquid crystals around charged particles , 2009, The European physical journal. E, Soft matter.

[31]  San-Yih Lin,et al.  Relaxation methods for liquid crystal problems , 1989 .

[32]  N. Abbott,et al.  Nematic-field-driven positioning of particles in liquid crystal droplets. , 2013, Physical review letters.

[33]  G. Stiny Shape , 1999 .

[34]  C. Denniston,et al.  Heterogeneous colloidal particles immersed in a liquid crystal. , 2017, Physical review. E.

[35]  Chun Liu,et al.  Approximation of Liquid Crystal Flows , 2000, SIAM J. Numer. Anal..

[36]  I. Dierking,et al.  Annihilation dynamics of umbilical defects in nematic liquid crystals under applied electric fields. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[37]  Biscarini,et al.  Phase Diagram and Orientational Order in a Biaxial Lattice Model: A Monte Carlo Study. , 1995, Physical review letters.

[38]  Michael Struwe,et al.  Variational methods: Applications to nonlinear partial differential equations and Hamiltonian systems , 1990 .

[39]  Hajime Tanaka,et al.  Colloidal aggregation in a nematic liquid crystal: topological arrest of particles by a single-stroke disclination line. , 2006, Physical review letters.

[40]  Jie Shen,et al.  A Phase-Field Model and Its Numerical Approximation for Two-Phase Incompressible Flows with Different Densities and Viscosities , 2010, SIAM J. Sci. Comput..

[41]  P. Bos,et al.  Fast Q-tensor method for modeling liquid crystal director configurations with defects , 2002 .

[42]  Haim Brezis,et al.  The interplay between analysis and topology in some nonlinear PDE problems , 2003 .

[43]  E. Samulski,et al.  Thermotropic biaxial nematic liquid crystals. , 2004, Physical review letters.

[44]  Scott P. MacLachlan,et al.  Energy Minimization for Liquid Crystal Equilibrium with Electric and Flexoelectric Effects , 2014, SIAM J. Sci. Comput..

[45]  Shuonan Wu,et al.  On the stability and accuracy of partially and fully implicit schemes for phase field modeling , 2016, Computer Methods in Applied Mechanics and Engineering.

[46]  Francesc Sagués,et al.  Active nematics , 2018, Nature Communications.

[47]  Xue-Cheng Tai,et al.  A Saddle Point Approach to the Computation of Harmonic Maps , 2009, SIAM J. Numer. Anal..

[48]  F. Alouges A New Algorithm For Computing Liquid Crystal Stable Configurations: The Harmonic Mapping Case , 1997 .

[49]  S. Ramaswamy Active matter , 2017, The European physical journal. E, Soft matter.

[50]  R. Temam,et al.  Mathematical Modeling in Continuum Mechanics: Index , 2000 .

[51]  Scott P. MacLachlan,et al.  An Energy-Minimization Finite-Element Approach for the Frank-Oseen Model of Nematic Liquid Crystals , 2014, SIAM J. Numer. Anal..

[52]  J. Hernandez-Ortiz,et al.  Liquid-crystal-mediated self-assembly at nanodroplet interfaces , 2012, Nature.

[53]  Jun-ichi Fukuda,et al.  Dynamics of a nematic liquid crystal around a spherical particle , 2004 .

[54]  S. Bedford Function Spaces for Liquid Crystals , 2014, 1411.5297.

[55]  P. Gennes,et al.  The physics of liquid crystals , 1974 .

[56]  Noel J. Walkington,et al.  Numerical approximation of nematic liquid crystal flows governed by the Ericksen-Leslie equations , 2011 .

[57]  Iain W. Stewart,et al.  Numerical solution of the Ericksen-Leslie dynamic equations for two-dimensional nematic liquid crystal flows , 2013, J. Comput. Phys..

[58]  J. T. Pinto,et al.  Decoupling of the Ericksen–Leslie equations , 2013 .

[59]  R. Leighton,et al.  The Feynman Lectures on Physics; Vol. I , 1965 .

[60]  Arghir Zarnescu,et al.  Orientability and Energy Minimization in Liquid Crystal Models , 2010, 1009.2688.

[61]  S. Hess,et al.  Alignment tensor versus director: Description of defects in nematic liquid crystals. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[62]  Shawn W. Walker,et al.  Numerics for liquid crystals with variable degree of orientation , 2015 .

[63]  John W. Barrett,et al.  CONVERGENCE OF A FULLY DISCRETE FINITE ELEMENT METHOD FOR A DEGENERATE PARABOLIC SYSTEM MODELLING NEMATIC LIQUID CRYSTALS WITH VARIABLE DEGREE OF ORIENTATION , 2006 .

[65]  Jie Shen,et al.  Modeling and simulations of drop pinch-off from liquid crystal filaments and the leaky liquid crystal faucet immersed in viscous fluids , 2013, J. Comput. Phys..

[66]  S. Ramaswamy,et al.  Hydrodynamics of soft active matter , 2013 .

[67]  W. H. Jeu,et al.  Liquid Crystal Elastomers: Materials and Applications , 2012 .

[68]  D. Kwak,et al.  Energetic variational approach in complex fluids: Maximum dissipation principle , 2009 .

[69]  Ricardo H. Nochetto,et al.  The Ericksen model of liquid crystals with colloidal and electric effects , 2017, J. Comput. Phys..

[70]  Eugene C. Gartland,et al.  A Renormalized Newton Method for Liquid Crystal Director Modeling , 2015, SIAM J. Numer. Anal..

[71]  S. Walker On The Correct Thermo-dynamic Potential for Electro-static Dielectric Energy , 2018, 1803.08136.

[72]  Cheng Wang,et al.  An Energy-Stable and Convergent Finite-Difference Scheme for the Phase Field Crystal Equation , 2009, SIAM J. Numer. Anal..

[73]  J. Ball,et al.  Mathematics and liquid crystals , 2016, 1612.03792.

[74]  M. Humar,et al.  3D microlasers from self-assembled cholesteric liquid-crystal microdroplets. , 2010, Optics express.

[75]  Apala Majumdar,et al.  Equilibrium order parameters of nematic liquid crystals in the Landau-de Gennes theory , 2008, European Journal of Applied Mathematics.

[76]  P. G. Ciarlet,et al.  Maximum principle and uniform convergence for the finite element method , 1973 .

[77]  Jean-Baptiste Fournier,et al.  Modeling planar degenerate wetting and anchoring in nematic liquid crystals , 2005 .

[78]  Sergey Korotov,et al.  Weakened acute type condition for tetrahedral triangulations and the discrete maximum principle , 2001, Math. Comput..

[79]  M. Freiser,et al.  Ordered States of a Nematic Liquid , 1970 .

[80]  M. Bele,et al.  Janus nematic colloids , 2009 .

[81]  Epifanio G. Virga,et al.  Variational Theories for Liquid Crystals , 2018 .

[83]  J. Jost Riemannian geometry and geometric analysis , 1995 .

[84]  F. Lin,et al.  Static and dynamic theories of liquid crystals , 2001 .

[85]  W. H. Jeu,et al.  Landau theory of the nematic-isotropic phase transition , 1986 .

[86]  J. Ericksen Liquid crystals with variable degree of orientation , 1991 .

[87]  T. Vicsek,et al.  Collective Motion , 1999, physics/9902023.

[88]  Gu,et al.  Observation of saturn-ring defects around solid microspheres in nematic liquid crystals , 2000, Physical review letters.

[89]  Mitchell Luskin,et al.  Relaxation and gradient methods for molecular orientation in liquid crystals , 1989 .

[90]  Clifford Ambrose Truesdell,et al.  A first course in rational continuum mechanics , 1976 .

[91]  Ricardo H. Nochetto,et al.  Discrete gradient flows for shape optimization and applications , 2007 .

[92]  Sören Bartels,et al.  Numerical Methods for Nonlinear Partial Differential Equations , 2015 .

[93]  L. Ambrosio Regularity of solutions of a degenerate elliptic variational problem , 1990 .

[94]  Ricardo H. Nochetto,et al.  A Finite Element Method for Nematic Liquid Crystals with Variable Degree of Orientation , 2016, SIAM J. Numer. Anal..

[95]  Thomas A. Manteuffel,et al.  Constrained Optimization for Liquid Crystal Equilibria , 2016, SIAM J. Sci. Comput..

[96]  G. Barbero,et al.  On the validity of the Rapini-Papoular surface anchoring energy form in nematic liquid crystals , 1986 .

[97]  Existence of minimal energy configurations of nematic liquid crystals with variable degree of orientation , 1990 .

[98]  J. Ball,et al.  Orientable and non‐orientable director fields for liquid crystals , 2007 .

[99]  Bo Zhang,et al.  Experimental Insights into the Nanostructure of the Cores of Topological Defects in Liquid Crystals. , 2016, Physical review letters.

[100]  Karen Uhlenbeck,et al.  A regularity theory for harmonic maps , 1982 .

[101]  Jie Shen,et al.  A decoupled energy stable scheme for a hydrodynamic phase-field model of mixtures of nematic liquid crystals and viscous fluids , 2016, J. Comput. Phys..

[102]  Ricardo H. Nochetto,et al.  A structure-preserving FEM for the uniaxially constrained Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf{Q}$ , 2019, Numerische Mathematik.

[103]  K. A. Suresh,et al.  Thermotropic uniaxial and biaxial nematic and smectic phases in bent-core mesogens. , 2005, Journal of the American Chemical Society.

[104]  Frédéric Hecht,et al.  A mesh adaptivity scheme on the Landau-de Gennes functional minimization case in 3D, and its driving efficiency , 2015, J. Comput. Phys..

[105]  R. Nolte,et al.  The development of self-assembled liquid crystal display alignment layers , 2007, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[106]  S. Ramaswamy The Mechanics and Statistics of Active Matter , 2010, 1004.1933.

[107]  S. Žumer,et al.  Janus Nematic Colloids with Designable Valance , 2014, Materials.

[108]  Andrea Braides Gamma-Convergence for Beginners , 2002 .

[109]  P. Ryan,et al.  Cholesteric Liquid Crystal Shells as Enabling Material for Information‐Rich Design and Architecture , 2018, Advanced materials.

[110]  Timothy A. Davis,et al.  Finite Element Analysis of the Landau--de Gennes Minimization Problem for Liquid Crystals , 1998 .

[111]  M. Shelley,et al.  Active matter invasion of a viscous fluid: Unstable sheets and a no-flow theorem. , 2018, Physical review letters.

[112]  R. Varga,et al.  Numerical Minimization of the Landau-de Gennes Free Energy: Defects in Cylindrical Capillaries , 1991 .

[113]  J. Kelly,et al.  A new configurational transition in inhomogeneous nematics , 1994 .

[114]  P. Sheng,et al.  A variational approach to moving contact line hydrodynamics , 2006, Journal of Fluid Mechanics.

[115]  S. Žumer,et al.  Knot theory realizations in nematic colloids , 2015, Proceedings of the National Academy of Sciences.

[116]  D. Kinderlehrer,et al.  The elementary defects of the Oseen-Frank energy for a liquid crystal , 1993 .

[117]  Jia Zhao,et al.  Semi-Discrete Energy-Stable Schemes for a Tensor-Based Hydrodynamic Model of Nematic Liquid Crystal Flows , 2016, Journal of Scientific Computing.

[118]  Luca Giomi,et al.  Geometry and topology of turbulence in active nematics , 2014, 1409.1555.