Umt-domains and domains with prüfer integral closure

An integral domain R is said to be a UMT-domain if uppers to zero in R[X) are maximal t-ideals. We show that R is a UMT-domain if and only if its localizations at maximal tdeals have Prufer integral closure. We also prove that the UMT-property is preserved upon passage to polynomial rings. Finally, we characterize the UMT-property in certian pullback constructions; as an application, we show that a domain has Prufer integral closure if and only if all its overrings are UMT-domains.