Proper local complete intersection morphisms preserve perfect complexes
暂无分享,去创建一个
[1] B. Toën. Derived Azumaya algebras and generators for twisted derived categories , 2012, Inventiones mathematicae.
[2] B. Toën. Higher and derived stacks: a global overview , 2009 .
[3] Bertrand Toën. Anneaux de définition des dg‐algèbres propres et lisses , 2008 .
[4] A. Neeman,et al. Quasi-perfect scheme-maps and boundedness of the twisted inverse image functor , 2006, math/0611760.
[5] B. Toën,et al. Moduli of objects in dg-categories , 2005, math/0503269.
[6] G. Vezzosi,et al. Homotopical Algebraic Geometry II: Geometric Stacks and Applications , 2004, math/0404373.
[7] Bertrand Toen,et al. Homotopical algebraic geometry. I. Topos theory. , 2002, math/0207028.
[8] Amnon Neeman,et al. The Grothendieck duality theorem via Bousfield’s techniques and Brown representability , 1996 .
[9] R. Thomason,et al. Higher Algebraic K-Theory of Schemes and of Derived Categories , 1990 .
[10] R. Kiehl. Ein „Descente“-Lemma und Grothendiecks Projektionssatz für nichtnoethersche Schemata , 1972 .