The Giant Magellan Telescope adaptive optics program

The Giant Magellan Telescope (GMT) adaptive optics (AO) system will be an integral part of the telescope, providing laser guidestar generation, wavefront sensing, and wavefront correction to every instrument currently planned on the 25.4 m diameter GMT. There will be three first generation AO observing modes: Natural Guidestar, Laser Tomography, and Ground Layer AO. All three will use a segmented adaptive secondary mirror to deliver a corrected beam directly to the instruments. The Natural Guidestar mode will provide extreme AO performance, with a total wavefront error less than 185 nm RMS using bright guidestars. The Laser Tomography mode uses 6 lasers and a single off-axis natural guidestar to deliver better than 290 nm RMS wavefront error at the science target, over 50% of the sky at the galactic pole. The Ground Layer mode uses 4 natural guidestars on the periphery of the science field to tomographically reconstruct and correct the ground layer AO turbulence, improving the image quality for wide-field instruments. A phasing system maintains the relative alignment of the primary and secondary segments using edge sensors and continuous feedback from an off-axis guidestar. We describe the AO system preliminary design, predicted performance, and the remaining technical challenges as we move towards the start of construction.

[1]  S. Parcell,et al.  GMT integral-field spectrograph (GMTIFS) conceptual design , 2012, Other Conferences.

[2]  Ronald Holzlöhner,et al.  Laser guide star return flux simulations based on observed sodium density profiles , 2010, Astronomical Telescopes + Instrumentation.

[3]  Rodolphe Conan,et al.  Integrated Optic Segment Piston Sensor for the GMT , 2013 .

[4]  George H. Jacoby,et al.  The instrument development and selection process for the Giant Magellan Telescope , 2012, Other Conferences.

[5]  Marcos A. van Dam,et al.  Design of a truth sensor for the GMT laser tomography adaptive optics system , 2012, Other Conferences.

[6]  R. Conan,et al.  GMT AO system requirements and error budgets in the preliminary design phase , 2012, Other Conferences.

[7]  S. Esposito,et al.  Pyramid sensor for segmented mirror alignment. , 2005, Optics letters.

[8]  L. Carbonaro,et al.  Wavefront sensor design for the GMT natural guide star AO system , 2012, Other Conferences.

[9]  James H. Burge,et al.  Design of adaptive optics calibration source for the Giant Magellan Telescope , 2014, Astronomical Telescopes and Instrumentation.

[10]  Dani Guzman,et al.  A preliminary design for the GMT-Consortium Large Earth Finder (G-CLEF) , 2014, Astronomical Telescopes and Instrumentation.

[11]  Jonny Gauvin,et al.  Optical designs of the LGS WFS system for GMT-LTAO , 2012, Other Conferences.

[12]  Piotr Piatrou Integrated modeling of the GMT laser tomography adaptive optics system , 2014, Astronomical Telescopes and Instrumentation.

[13]  R. Ragazzoni Pupil plane wavefront sensing with an oscillating prism , 1996 .

[14]  T. Prochaska,et al.  An update on the wide field, multi-object, moderate-resolution, spectrograph for the Giant Magellan Telescope , 2014, Astronomical Telescopes and Instrumentation.

[15]  Michael Sheehan,et al.  GMT site: facilities and enclosure design overview , 2014, Astronomical Telescopes and Instrumentation.

[16]  M. Kasper,et al.  Adaptive optics for Extremely Large Telescopes , 2005, Proceedings of the International Astronomical Union.

[17]  Rodolphe Conan,et al.  Fast iterative optimal estimation of turbulence wavefronts with recursive block Toeplitz covariance matrix , 2014, Astronomical Telescopes and Instrumentation.

[18]  Lorenzo Busoni,et al.  Meaningful options for a dichroic unit within the natural & laser guide star AO systems at the Giant Magellan Telescope , 2014, Astronomical Telescopes and Instrumentation.

[19]  Armando Riccardi,et al.  First light AO (FLAO) system for LBT: final integration, acceptance test in Europe, and preliminary on-sky commissioning results , 2010, Astronomical Telescopes + Instrumentation.

[20]  Stephen A. Shectman,et al.  Modeling the adaptive optics systems on the Giant Magellan Telescope , 2010, Astronomical Telescopes + Instrumentation.

[21]  Antonin Bouchez,et al.  Coupled waveguide integrated optic segment piston sensor for the GMT , 2013, 2013 Conference on Lasers & Electro-Optics Europe & International Quantum Electronics Conference CLEO EUROPE/IQEC.

[22]  Edison Bustos,et al.  Two campaigns to compare three turbulence profiling techniques at Las Campanas Observatory , 2008, Astronomical Telescopes + Instrumentation.

[23]  Philip M. Hinz,et al.  Design and predicted performance of the GMT ground-layer adaptive optics mode , 2012, Other Conferences.

[24]  Tomas Chylek,et al.  Design of the Giant Magellan Telescope , 2014, Astronomical Telescopes and Instrumentation.

[25]  D. Scott Acton,et al.  The Giant Magellan Telescope phasing system , 2012, Other Conferences.

[26]  Antonin Bouchez,et al.  Giant Magellan Telescope: overview , 2012, Other Conferences.

[27]  S. Esposito,et al.  High Resolution Hα Images of the Binary Low-mass Proplyd LV 1 with the Magellan AO System , 2013 .

[28]  Stephen A. Shectman,et al.  A prototype phasing camera for the Giant Magellan Telescope , 2012, Other Conferences.

[29]  Celine d'Orgeville,et al.  GMT Laser Guide Star Facility , 2013 .

[30]  S. Derriere,et al.  Erratum: A synthetic view on structure and evolution of the Milky Way , 2004 .

[31]  Stuart Barnes,et al.  GMTNIRS (Giant Magellan Telescope Near-Infrared Spectrograph): optimizing the design for maximum science productivity and minimum risk , 2014, Astronomical Telescopes and Instrumentation.

[32]  Michael Sean Goodwin Turbulence profiling at Siding Spring and Las Campanas Observatories , 2009 .

[33]  Armando Riccardi,et al.  Adaptive secondary mirrors for the Large Binocular Telescope , 2003, SPIE Astronomical Telescopes + Instrumentation.

[34]  William A. Podgorski,et al.  The Giant Magellan Telescope active optics system , 2014, Astronomical Telescopes and Instrumentation.

[35]  Stephen A. Shectman,et al.  Progress on the structural and mechanical design of the Giant Magellan Telescope , 2012, Other Conferences.

[36]  R. Biasi,et al.  VLT deformable secondary mirror: integration and electromechanical tests results , 2012, Other Conferences.

[37]  F. Rigaut,et al.  The Giant Magellan Telescope laser tomography adaptive optics system , 2012, Other Conferences.

[38]  Mauro Manetti,et al.  Servo-fluid-elastic modeling of contactless levitated adaptive secondary mirrors , 2012 .

[39]  S. Esposito,et al.  Infinite impulse response modal filtering in visible adaptive optics , 2012, Other Conferences.

[40]  Marcos A. van Dam,et al.  Wide field adaptive optics correction for the GMT using natural guide stars , 2014, Astronomical Telescopes and Instrumentation.