Silicon Nitride Photonics for the Near-Infrared

In recent years, silicon nitride (SiN) has drawn attention for the realisation of integrated photonic devices due to its fabrication flexibility and advantageous intrinsic properties that can be tailored to fulfill the requirements of different linear and non-linear photonic applications. This paper focuses on our progress in the demonstration of enhanced functionalities in the near infrared wavelength regime with our low temperature (<350 <inline-formula><tex-math notation="LaTeX">${^\circ}$</tex-math></inline-formula>C) SiN platform. It discusses (de)multiplexing devices, nonlinear all optical conversion, photonic crystal structures, the integration with novel phase change materials, and introduces applications in the 2 <inline-formula><tex-math notation="LaTeX">$\mu$</tex-math></inline-formula>m wavelength range.

[1]  D. Van Thourhout,et al.  Comparison of AWGs and Echelle Gratings for Wavelength Division Multiplexing on Silicon-on-Insulator , 2014, IEEE Photonics Journal.

[2]  C. David Wright,et al.  Nonvolatile Reconfigurable Phase‐Change Metadevices for Beam Steering in the Near Infrared , 2018 .

[3]  Noboru Yamada,et al.  A Study of Highly Symmetrical Crystal Structures, Commonly Seen in High-Speed Phase-Change Materials, Using Synchrotron Radiation , 2002 .

[4]  A. Khokhar,et al.  Hot wire chemical vapor deposition for silicon photonics: An emerging industrial application opportunity , 2019, Thin Solid Films.

[5]  Periklis Petropoulos,et al.  Material and optical properties of low-temperature NH3-free PECVD SiNx layers for photonic applications , 2017 .

[6]  Guo-Qiang Lo,et al.  CMOS compatible monolithic multi-layer Si₃N₄₋ on-SOI platform for low-loss high performance silicon photonics dense integration. , 2014, Optics express.

[7]  E. Pop,et al.  GST-on-silicon hybrid nanophotonic integrated circuits: a non-volatile quasi-continuously reprogrammable platform , 2018 .

[8]  D Hillerkuss,et al.  High speed plasmonic modulator array enabling dense optical interconnect solutions. , 2015, Optics express.

[9]  Thomas Taubner,et al.  Phase-change materials for non-volatile photonic applications , 2017, Nature Photonics.

[10]  A. Khokhar,et al.  Ultrahigh-Q photonic crystal cavities in silicon rich nitride. , 2017, Optics express.

[11]  Louay A. Eldada,et al.  Advances in telecom and datacom optical components , 2001 .

[12]  Robert W. Boyd,et al.  Material slow light and structural slow light: similarities and differences for nonlinear optics [Invited] , 2011 .

[13]  A. Leinse,et al.  TriPleX: a versatile dielectric photonic platform , 2015 .

[14]  M. Galli,et al.  Stimulated and spontaneous four-wave mixing in silicon-on-insulator coupled photonic wire nano-cavities , 2013, 1307.5206.

[15]  Steven G. Johnson,et al.  Enhanced nonlinear optics in photonic-crystal microcavities. , 2007, Optics express.

[16]  M. Notomi,et al.  Sub-femtojoule all-optical switching using a photonic-crystal nanocavity , 2010 .

[17]  Milos Nedeljkovic,et al.  Next Generation Device Grade Silicon-Germanium on Insulator , 2015, Scientific Reports.

[18]  T. Perova,et al.  One-Dimensional Multi-Channel Photonic Crystal Resonators Based on Silicon-On-Insulator With High Quality Factor , 2018, Front. Phys..

[19]  Raluca Dinu,et al.  100 GHz silicon–organic hybrid modulator , 2014, Light: Science & Applications.

[20]  Michal Lipson,et al.  Scalable 3D dense integration of photonics on bulk silicon. , 2011, Optics express.

[21]  Gian-Luca Bona,et al.  SiON high-refractive-index waveguide and planar lightwave circuits , 2003, IBM J. Res. Dev..

[22]  C. David Wright,et al.  On‐Chip Photonic Memory Elements Employing Phase‐Change Materials , 2014, Advanced materials.

[23]  Vittorio M. N. Passaro,et al.  Design Procedure and Fabrication of Reproducible Silicon Vernier Devices for High-Performance Refractive Index Sensing , 2015, Sensors.

[24]  M. Wuttig,et al.  Phase-change materials for rewriteable data storage. , 2007, Nature materials.

[25]  Shiyang Zhu,et al.  Low-loss amorphous silicon wire waveguide for integrated photonics: effect of fabrication process and the thermal stability. , 2010, Optics express.

[26]  Harish Bhaskaran,et al.  Integrated all-photonic non-volatile multi-level memory , 2015, Nature Photonics.

[27]  R. Schropp,et al.  High-density silicon nitride deposited at low substrate temperature with high deposition rate using hot wire chemical vapour deposition , 2007 .

[28]  Lukas Chrostowski,et al.  Silicon Photonics Circuit Design: Methods, Tools and Challenges , 2018 .

[29]  Florian Merget,et al.  Silicon nitride CMOS-compatible platform for integrated photonics applications at visible wavelengths. , 2013, Optics express.

[30]  F. Diederich,et al.  All-optical high-speed signal processing with silicon–organic hybrid slot waveguides , 2009 .

[31]  E. Sleeckx,et al.  Low-loss amorphous silicon-on-insulator technology for photonic integrated circuitry , 2009 .

[32]  David J. Thomson,et al.  The evolution of angled MMI structure on the SOI platform , 2014, Photonics West - Optoelectronic Materials and Devices.

[33]  C. David Wright,et al.  Controlled switching of phase-change materials by evanescent-field coupling in integrated photonics [Invited] , 2018, Optical Materials Express.

[34]  Masaya Notomi,et al.  Manipulating light with strongly modulated photonic crystals , 2010 .

[35]  Suchandan Pal,et al.  Recent advances and progress in photonic crystal-based gas sensors , 2017 .

[36]  H. Trieu,et al.  Photonic integrated circuit components based on amorphous silicon-on-insulator technology , 2016 .

[37]  Liam O'Faolain,et al.  Low-power continuous-wave generation of visible harmonics in silicon photonic crystal nanocavities. , 2010, Optics express.

[38]  Wolfram H. P. Pernice,et al.  Silicon nitride membrane photonics , 2009 .

[40]  B. M. A. Rahman,et al.  Ultracompact Si-GST Hybrid Waveguides for Nonvolatile Light Wave Manipulation , 2018, IEEE Photonics Journal.

[41]  Frederic Y Gardes,et al.  Athermal silicon nitride angled MMI wavelength division (de)multiplexers for the near-infrared. , 2017, Optics express.

[42]  T. Krauss,et al.  Planar photonic crystal cavities with far-field optimization for high coupling efficiency and quality factor. , 2010, Optics express.

[43]  David J. Thomson,et al.  Coarse wavelength division (de)multiplexer using an interleaved angled multimode interferometer structure , 2013 .

[44]  Xiang Zhang,et al.  A graphene-based broadband optical modulator , 2011, Nature.

[45]  Smith,et al.  Optical dielectric function and infrared absorption of hydrogenated amorphous silicon nitride films: Experimental results and effective-medium-approximation analysis. , 1990, Physical review. B, Condensed matter.

[46]  Bustarret,et al.  Configurational statistics in a-SixNyHz alloys: A quantitative bonding analysis. , 1988, Physical review. B, Condensed matter.

[47]  F Y Gardes,et al.  Wavelength division (de)multiplexing based on dispersive self-imaging. , 2011, Optics letters.

[48]  F. Karouta,et al.  Structural, compositional and optical properties of PECVD silicon nitride layers , 2012 .

[49]  A. Arbabi,et al.  Measurements of the refractive indices and thermo-optic coefficients of Si3N4 and SiO(x) using microring resonances. , 2013, Optics letters.

[50]  S. Elliott,et al.  Microscopic origin of the fast crystallization ability of Ge-Sb-Te phase-change memory materials. , 2008, Nature materials.

[51]  R. Soref Mid-infrared photonics in silicon and germanium , 2010 .

[52]  R. Morandotti,et al.  New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics , 2013, Nature Photonics.

[53]  H. Dekkers,et al.  The effect of composition on the bond structure and refractive index of silicon nitride deposited by HWCVD and PECVD , 2009 .

[54]  Richard A. Soref,et al.  Group IV photonics: Enabling 2 [mu]m communications , 2015 .

[55]  Nicolas Grandjean,et al.  Efficient continuous-wave nonlinear frequency conversion in high-Q gallium nitride photonic crystal cavities on silicon , 2016 .

[56]  Roelof Jansen,et al.  CMOS-compatible silicon nitride spectrometers for lab-on-a-chip spectral sensing , 2016, Photonics Europe.

[57]  F. Y. Gardes,et al.  Si-rich Silicon Nitride for Nonlinear Signal Processing Applications , 2017, Scientific Reports.

[58]  Shota Kita,et al.  Room temperature continuous wave operation and controlled spontaneous emission in ultrasmall photonic crystal nanolaser. , 2007, Optics express.

[59]  A. Driessen,et al.  Silicon oxynitride based photonics , 2008, 2008 10th Anniversary International Conference on Transparent Optical Networks.

[60]  A. Khokhar,et al.  Cavity-enhanced harmonic generation in silicon rich nitride photonic crystal microresonators , 2019, Applied Physics Letters.

[61]  S. Gulde,et al.  Quantum nature of a strongly coupled single quantum dot–cavity system , 2007, Nature.

[62]  D. Marris-Morini,et al.  A high efficiency silicon nitride grating coupler , 2007, 2007 4th IEEE International Conference on Group IV Photonics.

[63]  Kapil Debnath,et al.  Photonic crystal waveguides on silicon rich nitride platform. , 2017, Optics express.

[64]  Jens H. Schmid,et al.  Roadmap on silicon photonics , 2016 .

[65]  P. Roberts,et al.  Ultimate low loss of hollow-core photonic crystal fibres. , 2005, Optics express.

[66]  J. Bowers,et al.  Low-loss Si3N4 arrayed-waveguide grating (de)multiplexer using nano-core optical waveguides. , 2011, Optics express.

[67]  G. Lo,et al.  Low propagation loss SiN optical waveguide prepared by optimal low-hydrogen module. , 2008, Optics express.

[68]  D. Thomson,et al.  Mid-infrared wavelength division (de)multiplexer using an interleaved angled multimode interferometer on the silicon-on-insulator platform. , 2014, Optics letters.

[69]  C. David Wright,et al.  In-memory computing on a photonic platform , 2018, Science Advances.

[70]  Thomas F. Krauss,et al.  Light scattering and Fano resonances in high-Q photonic crystal nanocavities , 2009 .

[71]  Frederic Y Gardes,et al.  N-rich silicon nitride angled MMI for coarse wavelength division (de)multiplexing in the O-band. , 2018, Optics letters.

[72]  Thomas F. Krauss Slow light in photonic crystal waveguides , 2007 .

[73]  Daniel J. Blumenthal,et al.  Silicon Nitride in Silicon Photonics , 2018, Proceedings of the IEEE.

[74]  Masaya Notomi,et al.  Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect , 2006 .

[75]  A. Khokhar,et al.  Intermodal frequency generation in silicon-rich silicon nitride waveguides , 2019, Photonics Research.