Algebraic Combinatorics: Walks, Trees, Tableaux, and More

Updated preface to the first edition.- Preface to the second edition.-Basic notation.- 1. Walks in graphs.- 2. Cubes and the Radon transform.- 3. Random walks.- 4. The Sperner property.- 5. Group actions on boolean algebras.- 6. Young diagrams and q-binomial coefficients.- 7. Enumeration under group action.- 8. A glimpse of Young tableaux.- Appendix. The RSK algorithm.- Appendix. Plane partitions.- 9. The Matrix-Tree theorem.- Appendix. Three elegant combinatorial proofs.- 10. Eulerian diagraphs and oriented trees.- 11. Cycles, bonds, and electrical networks.- 12. A glimpse of combinatorial commutative algebra.- 13. Miscellaneous gems of algebraic combinatorics.- Hints and comments.- Bibliography.- Index.