lmridge: A Comprehensive R Package for Ridge Regression

The ridge regression estimator, one of the commonly used alternatives to the conventional ordinary least squares estimator, avoids the adverse effects in the situations when there exists some considerable degree of multicollinearity among the regressors. There are many software packages available for estimation of ridge regression coefficients. However, most of them display limited methods to estimate the ridge biasing parameters without testing procedures. Our developed package, lmridge can be used to estimate ridge coefficients considering a range of different existing biasing parameters, to test these coefficients with more than 25 ridge related statistics, and to present different graphical displays of these statistics.

[1]  José Dias Curto,et al.  The corrected VIF (CVIF) , 2011 .

[2]  G. C. McDonald,et al.  A Monte Carlo Evaluation of Some Ridge-Type Estimators , 1975 .

[3]  Ghazi Shukur,et al.  Some Modifications for Choosing Ridge Parameters , 2006 .

[4]  B. M. Golam Kibria,et al.  Please Scroll down for Article Communications in Statistics -simulation and Computation on Some Ridge Regression Estimators: an Empirical Comparisons on Some Ridge Regression Estimators: an Empirical Comparisons , 2022 .

[5]  William J. Hemmerle,et al.  Explicit and Constrained Generalized Ridge Estimation , 1978 .

[6]  A. E. Hoerl,et al.  Ridge Regression: Applications to Nonorthogonal Problems , 1970 .

[7]  D. N. Kashid,et al.  Alternative Method for Choosing Ridge Parameter for Regression , 2010 .

[8]  A. E. Hoerl,et al.  Ridge regression:some simulations , 1975 .

[9]  M. Iorio,et al.  A semi-automatic method to guide the choice of ridge parameter in ridge regression , 2012, 1205.0686.

[10]  Aslam Muhammad,et al.  mctest: An R Package for Detection of Collinearity among Regressors , 2016, R J..

[11]  Donald Eugene. Farrar,et al.  Multicollinearity in Regression Analysis; the Problem Revisited , 2011 .

[12]  David A. Belsley A Guide to using the collinearity diagnostics , 1991, Computer Science in Economics and Management.

[13]  David M. Allen,et al.  The Relationship Between Variable Selection and Data Agumentation and a Method for Prediction , 1974 .

[14]  G. Schwarz Estimating the Dimension of a Model , 1978 .