Asteroid Density, Porosity, and Structure

New data from observations of asteroid mutural perturbation events, observations of asteroid satellites, and spacecraft encounters have revolutionized our understanding of asteroid bulk density.

[1]  H. Dines ‘Soil’ Mechanics , 1944, Nature.

[2]  N. Lundborg,et al.  The strength-size relation of granite , 1967 .

[3]  Precise positions of comets. , 1971 .

[4]  D. Matson,et al.  Masses and Densities of Asteroids , 1979 .

[5]  N. White,et al.  The diameter of Pallas from its occultation of SAO 85009 , 1979 .

[6]  Harry Y. McSween,et al.  Meteorites and their parent planets , 1999 .

[7]  S. Roser,et al.  The mass of the asteroid (10) Hygiea derived from observations of (829) Academia , 1987 .

[8]  Glenn Schneider,et al.  The size, shape, density, and Albedo of Ceres from its occultation of BD+8°471 , 1987 .

[9]  C. Goodrich Meteorites and Their Parent Planets , 1988 .

[10]  W. Landgraf The mass of Ceres , 1988 .

[11]  Edward F. Tedesco,et al.  Asteroid magnitudes, UBV colors, and IRAS albedos and diameters , 1989 .

[12]  E. Standish,et al.  A determination of the masses of Ceres, Pallas, and Vesta from their perturbations upon the orbit of Mars , 1989 .

[13]  W. J. Cocke,et al.  Triaxial ellipsoid dimensions and rotational pole of 2 Pallas from two stellar occultations , 1989 .

[14]  R. Binzel,et al.  The size and shape of (2) Pallas from the 1983 occultation of 1 Vulpeculae , 1990 .

[15]  E. Goffin The orbit of 203 Pompeja and the mass of Ceres , 1991 .

[16]  W. Landgraf A Determination of the Mass of (704) Interamnia from Observations of (993) Moultona , 1992 .

[17]  John W. Fowler,et al.  The IRAS Minor Planet Survey , 1992 .

[18]  A. Nakamura,et al.  Velocity and spin of fragments from impact disruptions: I. An experimental approach to a general law between mass and velocity , 1992 .

[19]  D. Brownlee,et al.  Target Porosity Effects in Impact Cratering and Collisional Disruption , 1993 .

[20]  D. J. Hagerty,et al.  One‐Dimensional High‐Pressure Compression of Granular Media , 1994 .

[21]  K. Holsapple THE SCALING OF IMPACT PROCESSES IN PLANETARY SCIENCES , 1993 .

[22]  Jennifer L. Piatek,et al.  Mineralogical Variations within the S-Type Asteroid Class , 1993 .

[23]  I. Kukkonen,et al.  The petrophysical classification of meteorites , 1993 .

[24]  M. Nolan,et al.  Velocity Distributions among Colliding Asteroids , 1994 .

[25]  The orbit of (2) Pallas. , 1995 .

[26]  M. E. Davies,et al.  Bulk density of asteroid 243 Ida from the orbit of its satellite Dactyl , 1995, Nature.

[27]  P. Seidelmann,et al.  Prospects for Determining Asteroid Masses , 1996 .

[28]  Jerry A. Yamamuro,et al.  ONE-DIMENSIONAL COMPRESSION OF SANDS AT HIGH PRESSURES. CLOSURE , 1996 .

[29]  The Bordeaux meridian observations of asteroids. First determination of the mass of (11) Parthenope. , 1997 .

[30]  Farquhar,et al.  Estimating the mass of asteroid 253 mathilde from tracking data during the NEAR flyby , 1997, Science.

[31]  Richard P. Binzel,et al.  Impact excavation on Asteroid 4 Vesta: Hubble Space Telescope results , 1997 .

[32]  J. Hilton The Mass of the Asteroid 15 Eunomia From Observations of 1313 Berna and 1284 Latvia , 1997 .

[33]  H. Melosh,et al.  ASTEROIDS : SHATTERED BUT NOT DISPERSED , 1997 .

[34]  Y. Medvedev,et al.  Using Close Encounters of Minor Planets for the Improvement of Their Masses , 1997 .

[35]  Veverka,et al.  NEAR's flyby of 253 mathilde: images of a C asteroid , 1997, Science.

[36]  Robert Q. Fugate,et al.  Full Adaptive Optics Images of Asteroids Ceres and Vesta; Rotational Poles and Triaxial Ellipsoid Dimensions☆☆☆ , 1998 .

[37]  D. Britt,et al.  The porosities of ordinary chondrites: Models and interpretation , 1998 .

[38]  Daniel T. Britt,et al.  The density and porosity of meteorites from the Vatican collection , 1998 .

[39]  B. Viateau,et al.  The mass of (1) Ceres from its gravitational perturbations on the orbits of 9 asteroids , 1998 .

[40]  D. Britt,et al.  Climate and rock weathering: a study of terrestrial age dated ordinary chondritic meteorites from hot desert regions , 1998 .

[41]  D. Sears The Case for Rarity of Chondrules and Calcium-Aluminum-rich Inclusions in the Early Solar System and Some Implications for Astrophysical Models , 1998 .

[42]  W. Benz,et al.  Disruption of kilometre-sized asteroids by energetic collisions , 1998, Nature.

[43]  AN ESTIMATION OF THE MASS OF ASTEROID 20-MASSALIA DERIVED FROM THE HIPPARCOS MINOR PLANETS DATA , 1998 .

[44]  P. Thomas,et al.  Cratering on Mathilde , 1999 .

[45]  A. Meibom,et al.  Evidence for the insignificance of ordinary chondritic material in the asteroid belt , 1999 .

[46]  G. Duvert,et al.  Discovery of a moon orbiting the asteroid 45 Eugenia , 1999, Nature.

[47]  D. Davis,et al.  A Laboratory Impact Study of Simulated Edgeworth–Kuiper Belt Objects , 1999 .

[48]  Veverka,et al.  Estimating the mass of asteroid 433 eros during the NEAR spacecraft flyby , 1999, Science.

[49]  K. Holsapple,et al.  Compaction as the origin of the unusual craters on the asteroid Mathilde , 1999, Nature.

[50]  G. J. Flynn,et al.  Density and Porosity of Stone Meteorites: Implications for the Density, Porosity, Cratering, and Collisional Disruption of Asteroids , 1999 .

[51]  J. A. Thomas,et al.  Porosity effects on impact processes in solar system materials , 1999 .

[52]  Clark R. Chapman,et al.  Discovery of companions to Asteroids 762 Pul-cova and 90 Antiope by direct imaging , 1999 .

[53]  K. Keil,et al.  The internal structures and densities of asteroids , 1999 .

[54]  Kevin R. Housen,et al.  Scale Effects in Strength-Dominated Collisions of Rocky Asteroids , 1999 .

[55]  J. Hilton US Naval Observatory Ephemerides of the Largest Asteroids , 1999 .

[56]  Zuber,et al.  The shape of 433 eros from the NEAR-shoemaker laser rangefinder , 2000, Science.

[57]  G. Michalak,et al.  Determination of asteroid masses , 2000 .

[58]  Li,et al.  NEAR at eros: imaging and spectral results , 2000, Science.

[59]  Mark S. Robinson,et al.  Bulk density of ordinary chondrite meteorites and implications for asteroidal internal structure , 2000 .

[60]  D. Britt The Porosity of Dark Meteorites and the Structure of Low-Albedo Asteroids , 2000 .

[61]  B. Viateau Mass and density of asteroids (16) Psyche and (121) Hermione , 2000 .

[62]  Veverka,et al.  Radio science results during the NEAR-shoemaker spacecraft rendezvous with eros , 2000, Science.

[63]  R. Menikoff MESO-SCALE SIMULATIONS OF COMPACTION WAVES IN A GRANULAR BED , 2001 .

[64]  E. Goffin New determination of the mass of Pallas , 2001 .

[65]  Daniel T. Britt Modeling the Structure of High Porosity Asteroids , 2001 .

[66]  Origin of the Double Asteroid 90 Antiope: A Continuing Puzzle , 2001 .

[67]  Martin A. Slade,et al.  Radar Observations of Binary Asteroid 2000 DP107 , 2001 .

[68]  J. Margot,et al.  Discovery and characterization of binary asteroids 22 Kalliope and 87 Sylvia , 2001 .

[69]  James L. Hilton,et al.  Asteroid Masses and Densities , 2002 .

[70]  U. S. Naval Asteroid Masses and Densities , 2002 .

[71]  H. Melosh,et al.  Gravitational Aggregates: Evidence and Evolution , 2002 .

[72]  E. Ryan,et al.  Asteroid Impacts: Laboratory Experiments and Scaling Laws , 2002 .

[73]  Erik Asphaug,et al.  Asteroid Interiors , 2002 .

[74]  Lance A. M. Benner,et al.  Radar Observations of Near-Earth Asteroids , 2003 .