Scaling Limits for Random Quadrangulations of Positive Genus

Abstract. We discuss scaling limits of large bipartite quadrangulations of positive genus. For a given $g$, we consider, for every positive integer $n$, a random quadrangulation $q_n$ uniformly distributed over the set of all rooted bipartite quadrangulations of genus $g$ with $n$ faces. We view it as a metric space by endowing its set of vertices with the graph distance. We show that, as $n$ tends to infinity, this metric space, with distances rescaled by the factor $n$ to the power of $-1/4$, converges in distribution, at least along some subsequence, toward a limiting random metric space. This convergence holds in the sense of the Gromov-Hausdorff topology on compact metric spaces. We show that, regardless of the choice of the subsequence, the Hausdorff dimension of the limiting space is almost surely equal to $4$. Our main tool is a bijection introduced by Chapuy, Marcus, and Schaeffer between the quadrangulations we consider and objects they call well-labeled $g$-trees. An important part of our study consists in determining the scaling limits of the latter.

[1]  Gilles Schaeffer Conjugaison d'arbres et cartes combinatoires aléatoires , 1998 .

[2]  Thomas Duquesne,et al.  Random Trees, Levy Processes and Spatial Branching Processes , 2002 .

[3]  Grégory Miermont,et al.  Scaling limits of random planar maps with large faces , 2011 .

[4]  Gilles Schaeffer,et al.  A Bijection for Rooted Maps on Orientable Surfaces , 2007, SIAM J. Discret. Math..

[5]  H. Fédérer Geometric Measure Theory , 1969 .

[6]  Philippe Chassaing,et al.  Random planar lattices and integrated superBrownian excursion , 2002, math/0205226.

[7]  Guillaume Chapuy,et al.  The structure of unicellular maps, and a connection between maps of positive genus and planar labelled trees , 2008, 0804.0546.

[8]  V. V. Petrov Limit Theorems of Probability Theory: Sequences of Independent Random Variables , 1995 .

[9]  V. V. Petrov Sums of Independent Random Variables , 1975 .

[10]  S. Ethier,et al.  Markov Processes: Characterization and Convergence , 2005 .

[11]  N. Bingham Probability Theory: An Analytic View , 2002 .

[12]  Gr'egory Miermont,et al.  Tessellations of random maps of arbitrary genus , 2007, 0712.3688.

[13]  R. Cori,et al.  Planar Maps are Well Labeled Trees , 1981, Canadian Journal of Mathematics.

[14]  R. Bass,et al.  Review: P. Billingsley, Convergence of probability measures , 1971 .

[15]  G. Miermont,et al.  On the sphericity of scaling limits of random planar quadrangulations , 2007, 0712.3687.

[16]  J. Neveu,et al.  Arbres et processus de Galton-Watson , 1986 .

[17]  Abdelkader Mokkadem,et al.  Limit of normalized quadrangulations: The Brownian map , 2006 .

[18]  Edward A. Bender,et al.  The number of rooted maps on an orientable surface , 1991, J. Comb. Theory, Ser. B.

[19]  Jim Pitman,et al.  Markovian Bridges: Construction, Palm Interpretation, and Splicing , 1993 .

[20]  Jim Pitman,et al.  Path transformations of first passage bridges , 2003 .

[21]  H. Schubert,et al.  O. D. Kellogg, Foundations of Potential Theory. (Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen, Band 31). X + 384 S. m. 30 Fig. Berlin/Heidelberg/New York 1967. Springer‐Verlag. Preis geb. DM 32,– , 1969 .

[22]  Zhicheng Gao The number of degree restricted maps on general surfaces , 1993, Discret. Math..

[23]  J. L. Gall,et al.  Spatial Branching Processes, Random Snakes, and Partial Differential Equations , 1999 .

[24]  M. Gromov Metric Structures for Riemannian and Non-Riemannian Spaces , 1999 .

[25]  J. F. Le Gall,et al.  Scaling Limits of Bipartite Planar Maps are Homeomorphic to the 2-Sphere , 2006 .

[26]  M. Yor,et al.  Continuous martingales and Brownian motion , 1990 .

[27]  Arcwise Isometries,et al.  A Course in Metric Geometry , 2001 .

[28]  Jean-François Le Gall,et al.  The topological structure of scaling limits of large planar maps , 2007 .

[29]  A. Mokkadem,et al.  States Spaces of the Snake and Its Tour—Convergence of the Discrete Snake , 2003 .

[30]  D. Stroock,et al.  Probability Theory: An Analytic View. , 1995 .

[31]  Laurent Schwartz,et al.  Analyse : Topologie générale et analyse fonctionnelle , 1993 .