Interaction-driven topological phase diagram of twisted bilayer MoTe$_2$

Twisted bilayer MoTe$_2$ is a promising platform to investigate the interplay between topology and many-body interaction. We present a theoretical study of its interaction-driven quantum phase diagrams based on a three-orbital model, which can be viewed as a generalization of the Kane-Mele-Hubbard model with an additional orbital and realistic Coulomb repulsion. We predict a cascade of phase transitions tuned by the twist angle $\theta$. At the hole filling factor $\nu=1$ (one hole per moir\'e unit cell), the ground state can be in the multiferroic phase with coexisting spontaneous layer polarization and magnetism, the quantum anomalous Hall phase, and finally the topologically trivial magnetic phases, as $\theta$ increases from $1.5^{\circ}$ to $5^{\circ}$. At $\nu=2$, the ground state can have a second-order phase transition between an antiferromagnetic phase and the quantum spin Hall phase as $\theta$ passes through a critical value. The dependence of the phase boundaries on model parameters such as the gate-to-sample distance, the dielectric constant, and the moir\'e potential amplitude is examined. The predicted phase diagrams can guide the search for topological phases in twisted transition metal dichalcogenide homobilayers.

[1]  T. Devakul,et al.  Fractional quantum anomalous Hall states in twisted bilayer MoTe$_2$ and WSe$_2$ , 2023, 2304.12261.

[2]  Xiaodong Xu,et al.  Fractional Chern Insulator in Twisted Bilayer MoTe$_2$ , 2023, 2304.11864.

[3]  T. Taniguchi,et al.  Mapping twist-tuned multiband topology in bilayer WSe2 , 2023, Science.

[4]  Xiaodong Xu,et al.  Signatures of fractional quantum anomalous Hall states in twisted MoTe_2 , 2023, Nature.

[5]  Xiaodong Xu,et al.  Programming correlated magnetic states with gate-controlled moiré geometry , 2023, Science.

[6]  E. Dagotto,et al.  Kanamori-Moir\'e-Hubbard model for transition metal dichalcogenide homobilayers , 2023, 2303.02305.

[7]  J. Shan,et al.  Gate-tunable heavy fermions in a moiré Kondo lattice , 2022, Nature.

[8]  A. Millis,et al.  Chiral Kondo lattice in doped MoTe2/WSe2 bilayers , 2022, Science advances.

[9]  E. Bergholtz,et al.  Multiferroicity and Topology in Twisted Transition Metal Dichalcogenides , 2022, 2210.14918.

[10]  Fengcheng Wu,et al.  Symmetric Wannier states and tight-binding model for quantum spin Hall bands in AB-stacked MoTe$_2$/WSe$_2$ , 2022, 2209.12928.

[11]  J. Shan,et al.  Valley-coherent quantum anomalous Hall state in AB-stacked MoTe2/WSe2 bilayers , 2022, 2208.07452.

[12]  V. Cr'epel,et al.  Anomalous Hall metal and fractional Chern insulator in twisted transition metal dichalcogenides , 2022, 2207.08895.

[13]  J. Shan,et al.  Realization of the Haldane Chern insulator in a moiré lattice , 2022, Nature Physics.

[14]  Z. Dong,et al.  Excitonic Chern insulator and kinetic ferromagnetism in MoTe$_2$/WSe$_2$ moir\'e bilayer , 2022, 2206.13567.

[15]  S. Sarma,et al.  Nematic excitonic insulator in transition metal dichalcogenide moir\'e heterobilayers , 2022, 2206.12427.

[16]  E. Dagotto,et al.  Magnetic ground states of honeycomb lattice Wigner crystals , 2022, Communications Physics.

[17]  J. Lado,et al.  Topological multiferroic order in twisted transition metal dichalcogenide bilayers , 2022, SciPost Physics.

[18]  L. Rademaker Spin-orbit coupling in transition metal dichalcogenide heterobilayer flat bands , 2021, Physical Review B.

[19]  L. Fu,et al.  Quantum Anomalous Hall Effect from Inverted Charge Transfer Gap , 2021, Physical Review X.

[20]  A. MacDonald,et al.  Nonlocal Interactions in Moiré Hubbard Systems. , 2021, Physical review letters.

[21]  K. T. Law,et al.  Valley-Polarized Quantum Anomalous Hall State in Moiré MoTe_{2}/WSe_{2} Heterobilayers. , 2021, Physical review letters.

[22]  T. Enoki,et al.  Electronic Structures , 2021, Chalcogen–Nitrogen Chemistry.

[23]  Kenji Watanabe,et al.  Imaging two-dimensional generalized Wigner crystals , 2021, Nature.

[24]  Nai Chao Hu,et al.  Competing magnetic states in transition metal dichalcogenide moiré materials , 2021, Physical Review B.

[25]  T. Devakul,et al.  Spin-textured Chern bands in AB-stacked transition metal dichalcogenide bilayers , 2021, Proceedings of the National Academy of Sciences.

[26]  J. Shan,et al.  Quantum anomalous Hall effect from intertwined moiré bands , 2021, Nature.

[27]  T. Devakul,et al.  Magic in twisted transition metal dichalcogenide bilayers , 2021, Nature Communications.

[28]  Yang Zhang,et al.  Electronic structures, charge transfer, and charge order in twisted transition metal dichalcogenide bilayers , 2021 .

[29]  J. Shan,et al.  Continuous Mott transition in semiconductor moiré superlattices , 2021, Nature.

[30]  A. Millis,et al.  Quantum criticality in twisted transition metal dichalcogenides , 2021, Nature.

[31]  A. MacDonald,et al.  Γ valley transition metal dichalcogenide moiré bands , 2021, Proceedings of the National Academy of Sciences.

[32]  U. Kumar,et al.  Spontaneous fractional Chern insulators in transition metal dichalcogenide moiré superlattices , 2021, Physical Review Research.

[33]  S. Trebst,et al.  Realization of nearly dispersionless bands with strong orbital anisotropy from destructive interference in twisted bilayer MoS2 , 2020, Nature Communications.

[34]  J. Shan,et al.  Correlated insulating states at fractional fillings of moiré superlattices , 2020, Nature.

[35]  S. Das Sarma,et al.  Quantum phase diagram of a Moiré-Hubbard model , 2020, Physical Review B.

[36]  Kenji Watanabe,et al.  Correlated electronic phases in twisted bilayer transition metal dichalcogenides , 2020, Nature Materials.

[37]  S. Das Sarma,et al.  Band topology, Hubbard model, Heisenberg model, and Dzyaloshinskii-Moriya interaction in twisted bilayer WSe2 , 2020, 2004.04168.

[38]  J. Shan,et al.  Simulation of Hubbard model physics in WSe2/WS2 moiré superlattices , 2020, Nature.

[39]  Kenji Watanabe,et al.  Mott and generalized Wigner crystal states in WSe2/WS2 moiré superlattices , 2019, Nature.

[40]  W. Yao,et al.  Giant magnetic field from moiré induced Berry phase in homobilayer semiconductors , 2019, National science review.

[41]  T. Senthil,et al.  Bridging Hubbard model physics and quantum Hall physics in trilayer graphene/h−BN moiré superlattice , 2018, Physical Review B.

[42]  A. MacDonald,et al.  Topological Insulators in Twisted Transition Metal Dichalcogenide Homobilayers. , 2018, Physical review letters.

[43]  E. Tutuc,et al.  Hubbard Model Physics in Transition Metal Dichalcogenide Moiré Bands. , 2018, Physical review letters.

[44]  Mit H. Naik,et al.  Ultraflatbands and Shear Solitons in Moiré Patterns of Twisted Bilayer Transition Metal Dichalcogenides. , 2018, Physical review letters.

[45]  Takashi Taniguchi,et al.  Unconventional superconductivity in magic-angle graphene superlattices , 2018, Nature.

[46]  E. Kaxiras,et al.  Correlated insulator behaviour at half-filling in magic-angle graphene superlattices , 2018, Nature.

[47]  M. Gilbert,et al.  Bulk Topological Invariants in Noninteracting Point Group Symmetric Insulators , 2012, 1207.5767.

[48]  Wang Yao,et al.  Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. , 2011, Physical review letters.

[49]  Z. Meng,et al.  Quantum phase transitions in the Kane-Mele-Hubbard model , 2011, 1111.3949.

[50]  F. Assaad,et al.  Correlation effects in quantum spin-Hall insulators: a quantum Monte Carlo study. , 2010, Physical review letters.

[51]  R. Bistritzer,et al.  Moiré bands in twisted double-layer graphene , 2010, Proceedings of the National Academy of Sciences.

[52]  C. Kane,et al.  Z2 topological order and the quantum spin Hall effect. , 2005, Physical review letters.

[53]  C. Kane,et al.  Quantum spin Hall effect in graphene. , 2004, Physical review letters.

[54]  Haldane,et al.  Model for a quantum Hall effect without Landau levels: Condensed-matter realization of the "parity anomaly" , 1988, Physical review letters.