Modified level set equation and its numerical assessment

In the context of level set methods, the level set equation is modified by embedding a source term. The exact expression of this term is such that the eikonal equation is automatically satisfied, and also, this term is zero on the interface. Theoretically, it renders the reinitialization of level sets unnecessary, similarly to the extension velocity method. The exact expression of the source term makes also possible the derivation of its local approximate forms, of zero-, first- and higher-order accuracy. Application of those forms simplifies the realization of level set methods in comparison with the extension velocity method, but requires the return to the reinitialization procedure. Nevertheless, the advantage of local approximate forms of the proposed source term is that the number of reinitializations can be significantly reduced in comparison with the standard level set equation with the reinitialization procedure. Furthermore, with increasing the order of accuracy of approximation less number of reinitializations is needed. This leads to improvement of the interface resolution. The paper describes the new approach and an assessment of its performance in different test cases.

[1]  Marcus Herrmann,et al.  A balanced force refined level set grid method for two-phase flows on unstructured flow solver grids , 2008, J. Comput. Phys..

[2]  Hongkai Zhao,et al.  A fast sweeping method for Eikonal equations , 2004, Math. Comput..

[3]  Ian M. Mitchell,et al.  A hybrid particle level set method for improved interface capturing , 2002 .

[4]  D. Juric,et al.  A front-tracking method for the computations of multiphase flow , 2001 .

[5]  Gunilla Kreiss,et al.  A conservative level set method for two phase flow II , 2005, J. Comput. Phys..

[6]  J. Sethian,et al.  LEVEL SET METHODS FOR FLUID INTERFACES , 2003 .

[7]  Chohong Min,et al.  On reinitializing level set functions , 2010, J. Comput. Phys..

[8]  J. Lowengrub,et al.  Quasi–incompressible Cahn–Hilliard fluids and topological transitions , 1998, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[9]  Steven H. Frankel,et al.  High-order incompressible large-eddy simulation of fully inhomogeneous turbulent flows , 2010, J. Comput. Phys..

[10]  J. Sethian,et al.  A Fast Level Set Method for Propagating Interfaces , 1995 .

[11]  David P. Schmidt,et al.  Modeling merging and breakup in the moving mesh interface tracking method for multiphase flow simulations , 2009, J. Comput. Phys..

[12]  Heinz Pitsch,et al.  An accurate conservative level set/ghost fluid method for simulating turbulent atomization , 2008, J. Comput. Phys..

[13]  A. Chorin A Numerical Method for Solving Incompressible Viscous Flow Problems , 1997 .

[14]  Stanley Osher,et al.  Fast Sweeping Algorithms for a Class of Hamilton-Jacobi Equations , 2003, SIAM J. Numer. Anal..

[15]  James A. Sethian,et al.  Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid , 2012 .

[16]  Li-Tien Cheng,et al.  Redistancing by flow of time dependent eikonal equation , 2008, J. Comput. Phys..

[17]  R Malladi,et al.  Image processing via level set curvature flow. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[18]  D. M. Anderson,et al.  DIFFUSE-INTERFACE METHODS IN FLUID MECHANICS , 1997 .

[19]  Wolfgang Schröder,et al.  The constrained reinitialization equation for level set methods , 2010, J. Comput. Phys..

[20]  Andrea Prosperetti,et al.  Motion of two superposed viscous fluids , 1981 .

[21]  Mark Sussman,et al.  An Efficient, Interface-Preserving Level Set Redistancing Algorithm and Its Application to Interfacial Incompressible Fluid Flow , 1999, SIAM J. Sci. Comput..

[22]  S. Osher,et al.  A PDE-Based Fast Local Level Set Method 1 , 1998 .

[23]  Ron Kimmel,et al.  Fast Marching Methods , 2004 .

[24]  Taku Kudo,et al.  Flame structure and radiation characteristics of CO/H2/CO2/air turbulent premixed flames at high pressure , 2011 .

[25]  Henri Samuel A level set two-way wave equation approach for Eulerian interface tracking , 2014, J. Comput. Phys..

[26]  D. Chopp Computing Minimal Surfaces via Level Set Curvature Flow , 1993 .

[27]  Sébastien Tanguy Développement d'une méthode de suivi d'interface. Applications aux écoulements diphasiques , 2004 .

[28]  Thomas L. Jackson,et al.  A high-order incompressible flow solver with WENO , 2009, J. Comput. Phys..

[29]  James A. Sethian,et al.  The Fast Construction of Extension Velocities in Level Set Methods , 1999 .

[30]  J. Sethian Level set methods : evolving interfaces in geometry, fluid mechanics, computer vision, and materials science , 1996 .

[31]  C. W. Hirt,et al.  Volume of fluid (VOF) method for the dynamics of free boundaries , 1981 .

[32]  David L. Chopp,et al.  Some Improvements of the Fast Marching Method , 2001, SIAM J. Sci. Comput..

[33]  S. Zalesak Fully multidimensional flux-corrected transport algorithms for fluids , 1979 .

[34]  G. Tryggvason,et al.  A front-tracking method for viscous, incompressible, multi-fluid flows , 1992 .

[35]  James A. Sethian,et al.  Level Set Methods and Fast Marching Methods , 1999 .

[36]  V. Gregory Weirs,et al.  A bandwidth-optimized WENO scheme for the effective direct numerical simulation of compressible turbulence , 2006, J. Comput. Phys..

[37]  E. Puckett,et al.  Second-Order Accurate Volume-of-Fluid Algorithms for Tracking Material Interfaces , 2013 .

[38]  M. Minion,et al.  Performance of Under-resolved Two-Dimensional Incompressible Flow , 1995 .

[39]  Yih-Nan Chen,et al.  Implicit weighted essentially non-oscillatory schemes for the incompressible Navier–Stokes equations , 1999 .

[40]  F. Couderc Développement d'un code de calcul pour la simulation d'écoulements de fluides non miscibles : application à la désintégration assistée d'un jet liquide par un courant gazeux , 2007 .

[41]  C. W. Hirt,et al.  An Arbitrary Lagrangian-Eulerian Computing Method for All Flow Speeds , 1997 .

[42]  Chi-Wang Shu,et al.  Total variation diminishing Runge-Kutta schemes , 1998, Math. Comput..

[43]  C. Peskin Numerical analysis of blood flow in the heart , 1977 .

[44]  J. M. Powers,et al.  Mapped weighted essentially non-oscillatory schemes: Achieving optimal order near critical points , 2005 .

[45]  Cheng-Chin Wu,et al.  A high order WENO finite difference scheme for incompressible fluids and magnetohydrodynamics , 2007 .

[46]  Olivier Desjardins Numerical methods for liquid atomization and application in detailed simulations of a diesel jet , 2008 .

[47]  Vladimir Igorevich Arnold,et al.  Geometrical Methods in the Theory of Ordinary Differential Equations , 1983 .

[48]  M. Sussman,et al.  A Coupled Level Set and Volume-of-Fluid Method for Computing 3D and Axisymmetric Incompressible Two-Phase Flows , 2000 .

[49]  Modified Level Set Equation for Gas-Liquid Interface and Its Numerical Solution , 2012 .

[50]  Yoshikazu Giga,et al.  Surface Evolution Equations: A Level Set Approach , 2006 .

[51]  Danping Peng,et al.  Weighted ENO Schemes for Hamilton-Jacobi Equations , 1999, SIAM J. Sci. Comput..

[52]  Ronald Fedkiw,et al.  Level set methods and dynamic implicit surfaces , 2002, Applied mathematical sciences.

[53]  Frédéric Gibou,et al.  Second-Order Accurate Computation of Curvatures in a Level Set Framework Using Novel High-Order Reinitialization Schemes , 2008, J. Sci. Comput..

[54]  S. Osher,et al.  Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .

[55]  William E. Pracht,et al.  Numerical Study of Density‐Current Surges , 1968 .

[56]  Björn Sjögreen,et al.  The Convergence Rate of Finite Difference Schemes in the Presence of Shocks , 1998 .

[57]  A. Chorin Numerical solution of the Navier-Stokes equations , 1968 .

[58]  Matthew W. Williams,et al.  A balanced-force algorithm for continuous and sharp interfacial surface tension models within a volume tracking framework , 2006, J. Comput. Phys..

[59]  Chi-Wang Shu,et al.  Efficient Implementation of Weighted ENO Schemes , 1995 .

[60]  Sophie Papst,et al.  Computational Methods For Fluid Dynamics , 2016 .

[61]  G. Jameson,et al.  A non-linear effect in the capillary instability of liquid jets , 1971, Journal of Fluid Mechanics.

[62]  S. Osher,et al.  A level set approach for computing solutions to incompressible two-phase flow , 1994 .

[63]  Ronald Fedkiw,et al.  A Boundary Condition Capturing Method for Multiphase Incompressible Flow , 2000, J. Sci. Comput..

[64]  Lijian Tan,et al.  A level set simulation of dendritic solidification of multi-component alloys , 2007, J. Comput. Phys..

[65]  S. Osher,et al.  Level set methods: an overview and some recent results , 2001 .

[66]  W. Rider,et al.  Reconstructing Volume Tracking , 1998 .

[67]  J. Sethian,et al.  FRONTS PROPAGATING WITH CURVATURE DEPENDENT SPEED: ALGORITHMS BASED ON HAMILTON-JACOB1 FORMULATIONS , 2003 .

[68]  儀我 美一 Surface evolution equations : a level set approach , 2006 .

[69]  J. López,et al.  On the reinitialization procedure in a narrow‐band locally refined level set method for interfacial flows , 2005 .

[70]  F. Harlow,et al.  Numerical Calculation of Time‐Dependent Viscous Incompressible Flow of Fluid with Free Surface , 1965 .

[71]  Xiaogang Deng,et al.  Developing high-order weighted compact nonlinear schemes , 2000 .

[72]  James A. Sethian,et al.  Fast-marching level-set methods for three-dimensional photolithography development , 1996, Advanced Lithography.

[73]  B. J. Daly Numerical Study of Two Fluid Rayleigh‐Taylor Instability , 1967 .

[74]  S. Zaleski,et al.  DIRECT NUMERICAL SIMULATION OF FREE-SURFACE AND INTERFACIAL FLOW , 1999 .

[75]  S. Osher,et al.  Regular Article: A PDE-Based Fast Local Level Set Method , 1999 .

[76]  S. Cummins,et al.  Estimating curvature from volume fractions , 2005 .

[77]  Heinz Pitsch,et al.  A spectrally refined interface approach for simulating multiphase flows , 2009, J. Comput. Phys..

[78]  P. Smereka,et al.  A Remark on Computing Distance Functions , 2000 .

[79]  T. Chan,et al.  A Variational Level Set Approach to Multiphase Motion , 1996 .

[80]  Wolfgang Schröder,et al.  Differential equation based constrained reinitialization for level set methods , 2008, J. Comput. Phys..

[81]  Olivier D. Faugeras,et al.  Reconciling Distance Functions and Level Sets , 1999, Scale-Space.

[82]  U. Ghia,et al.  High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method , 1982 .

[83]  David L. Chopp,et al.  Another Look at Velocity Extensions in the Level Set Method , 2009, SIAM J. Sci. Comput..

[84]  OlssonElin,et al.  A conservative level set method for two phase flow , 2005 .

[85]  P. Colella,et al.  A second-order projection method for the incompressible navier-stokes equations , 1989 .

[86]  Sergio Pirozzoli,et al.  Conservative Hybrid Compact-WENO Schemes for Shock-Turbulence Interaction , 2002 .