Modified level set equation and its numerical assessment
暂无分享,去创建一个
Vladimir Sabelnikov | Andrey Yu. Ovsyannikov | Mikhael Gorokhovski | M. Gorokhovski | V. Sabelnikov | A. Ovsyannikov
[1] Marcus Herrmann,et al. A balanced force refined level set grid method for two-phase flows on unstructured flow solver grids , 2008, J. Comput. Phys..
[2] Hongkai Zhao,et al. A fast sweeping method for Eikonal equations , 2004, Math. Comput..
[3] Ian M. Mitchell,et al. A hybrid particle level set method for improved interface capturing , 2002 .
[4] D. Juric,et al. A front-tracking method for the computations of multiphase flow , 2001 .
[5] Gunilla Kreiss,et al. A conservative level set method for two phase flow II , 2005, J. Comput. Phys..
[6] J. Sethian,et al. LEVEL SET METHODS FOR FLUID INTERFACES , 2003 .
[7] Chohong Min,et al. On reinitializing level set functions , 2010, J. Comput. Phys..
[8] J. Lowengrub,et al. Quasi–incompressible Cahn–Hilliard fluids and topological transitions , 1998, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[9] Steven H. Frankel,et al. High-order incompressible large-eddy simulation of fully inhomogeneous turbulent flows , 2010, J. Comput. Phys..
[10] J. Sethian,et al. A Fast Level Set Method for Propagating Interfaces , 1995 .
[11] David P. Schmidt,et al. Modeling merging and breakup in the moving mesh interface tracking method for multiphase flow simulations , 2009, J. Comput. Phys..
[12] Heinz Pitsch,et al. An accurate conservative level set/ghost fluid method for simulating turbulent atomization , 2008, J. Comput. Phys..
[13] A. Chorin. A Numerical Method for Solving Incompressible Viscous Flow Problems , 1997 .
[14] Stanley Osher,et al. Fast Sweeping Algorithms for a Class of Hamilton-Jacobi Equations , 2003, SIAM J. Numer. Anal..
[15] James A. Sethian,et al. Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid , 2012 .
[16] Li-Tien Cheng,et al. Redistancing by flow of time dependent eikonal equation , 2008, J. Comput. Phys..
[17] R Malladi,et al. Image processing via level set curvature flow. , 1995, Proceedings of the National Academy of Sciences of the United States of America.
[18] D. M. Anderson,et al. DIFFUSE-INTERFACE METHODS IN FLUID MECHANICS , 1997 .
[19] Wolfgang Schröder,et al. The constrained reinitialization equation for level set methods , 2010, J. Comput. Phys..
[20] Andrea Prosperetti,et al. Motion of two superposed viscous fluids , 1981 .
[21] Mark Sussman,et al. An Efficient, Interface-Preserving Level Set Redistancing Algorithm and Its Application to Interfacial Incompressible Fluid Flow , 1999, SIAM J. Sci. Comput..
[22] S. Osher,et al. A PDE-Based Fast Local Level Set Method 1 , 1998 .
[23] Ron Kimmel,et al. Fast Marching Methods , 2004 .
[24] Taku Kudo,et al. Flame structure and radiation characteristics of CO/H2/CO2/air turbulent premixed flames at high pressure , 2011 .
[25] Henri Samuel. A level set two-way wave equation approach for Eulerian interface tracking , 2014, J. Comput. Phys..
[26] D. Chopp. Computing Minimal Surfaces via Level Set Curvature Flow , 1993 .
[27] Sébastien Tanguy. Développement d'une méthode de suivi d'interface. Applications aux écoulements diphasiques , 2004 .
[28] Thomas L. Jackson,et al. A high-order incompressible flow solver with WENO , 2009, J. Comput. Phys..
[29] James A. Sethian,et al. The Fast Construction of Extension Velocities in Level Set Methods , 1999 .
[30] J. Sethian. Level set methods : evolving interfaces in geometry, fluid mechanics, computer vision, and materials science , 1996 .
[31] C. W. Hirt,et al. Volume of fluid (VOF) method for the dynamics of free boundaries , 1981 .
[32] David L. Chopp,et al. Some Improvements of the Fast Marching Method , 2001, SIAM J. Sci. Comput..
[33] S. Zalesak. Fully multidimensional flux-corrected transport algorithms for fluids , 1979 .
[34] G. Tryggvason,et al. A front-tracking method for viscous, incompressible, multi-fluid flows , 1992 .
[35] James A. Sethian,et al. Level Set Methods and Fast Marching Methods , 1999 .
[36] V. Gregory Weirs,et al. A bandwidth-optimized WENO scheme for the effective direct numerical simulation of compressible turbulence , 2006, J. Comput. Phys..
[37] E. Puckett,et al. Second-Order Accurate Volume-of-Fluid Algorithms for Tracking Material Interfaces , 2013 .
[38] M. Minion,et al. Performance of Under-resolved Two-Dimensional Incompressible Flow , 1995 .
[39] Yih-Nan Chen,et al. Implicit weighted essentially non-oscillatory schemes for the incompressible Navier–Stokes equations , 1999 .
[40] F. Couderc. Développement d'un code de calcul pour la simulation d'écoulements de fluides non miscibles : application à la désintégration assistée d'un jet liquide par un courant gazeux , 2007 .
[41] C. W. Hirt,et al. An Arbitrary Lagrangian-Eulerian Computing Method for All Flow Speeds , 1997 .
[42] Chi-Wang Shu,et al. Total variation diminishing Runge-Kutta schemes , 1998, Math. Comput..
[43] C. Peskin. Numerical analysis of blood flow in the heart , 1977 .
[44] J. M. Powers,et al. Mapped weighted essentially non-oscillatory schemes: Achieving optimal order near critical points , 2005 .
[45] Cheng-Chin Wu,et al. A high order WENO finite difference scheme for incompressible fluids and magnetohydrodynamics , 2007 .
[46] Olivier Desjardins. Numerical methods for liquid atomization and application in detailed simulations of a diesel jet , 2008 .
[47] Vladimir Igorevich Arnold,et al. Geometrical Methods in the Theory of Ordinary Differential Equations , 1983 .
[48] M. Sussman,et al. A Coupled Level Set and Volume-of-Fluid Method for Computing 3D and Axisymmetric Incompressible Two-Phase Flows , 2000 .
[49] Modified Level Set Equation for Gas-Liquid Interface and Its Numerical Solution , 2012 .
[50] Yoshikazu Giga,et al. Surface Evolution Equations: A Level Set Approach , 2006 .
[51] Danping Peng,et al. Weighted ENO Schemes for Hamilton-Jacobi Equations , 1999, SIAM J. Sci. Comput..
[52] Ronald Fedkiw,et al. Level set methods and dynamic implicit surfaces , 2002, Applied mathematical sciences.
[53] Frédéric Gibou,et al. Second-Order Accurate Computation of Curvatures in a Level Set Framework Using Novel High-Order Reinitialization Schemes , 2008, J. Sci. Comput..
[54] S. Osher,et al. Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .
[55] William E. Pracht,et al. Numerical Study of Density‐Current Surges , 1968 .
[56] Björn Sjögreen,et al. The Convergence Rate of Finite Difference Schemes in the Presence of Shocks , 1998 .
[57] A. Chorin. Numerical solution of the Navier-Stokes equations , 1968 .
[58] Matthew W. Williams,et al. A balanced-force algorithm for continuous and sharp interfacial surface tension models within a volume tracking framework , 2006, J. Comput. Phys..
[59] Chi-Wang Shu,et al. Efficient Implementation of Weighted ENO Schemes , 1995 .
[60] Sophie Papst,et al. Computational Methods For Fluid Dynamics , 2016 .
[61] G. Jameson,et al. A non-linear effect in the capillary instability of liquid jets , 1971, Journal of Fluid Mechanics.
[62] S. Osher,et al. A level set approach for computing solutions to incompressible two-phase flow , 1994 .
[63] Ronald Fedkiw,et al. A Boundary Condition Capturing Method for Multiphase Incompressible Flow , 2000, J. Sci. Comput..
[64] Lijian Tan,et al. A level set simulation of dendritic solidification of multi-component alloys , 2007, J. Comput. Phys..
[65] S. Osher,et al. Level set methods: an overview and some recent results , 2001 .
[66] W. Rider,et al. Reconstructing Volume Tracking , 1998 .
[67] J. Sethian,et al. FRONTS PROPAGATING WITH CURVATURE DEPENDENT SPEED: ALGORITHMS BASED ON HAMILTON-JACOB1 FORMULATIONS , 2003 .
[68] 儀我 美一. Surface evolution equations : a level set approach , 2006 .
[69] J. López,et al. On the reinitialization procedure in a narrow‐band locally refined level set method for interfacial flows , 2005 .
[70] F. Harlow,et al. Numerical Calculation of Time‐Dependent Viscous Incompressible Flow of Fluid with Free Surface , 1965 .
[71] Xiaogang Deng,et al. Developing high-order weighted compact nonlinear schemes , 2000 .
[72] James A. Sethian,et al. Fast-marching level-set methods for three-dimensional photolithography development , 1996, Advanced Lithography.
[73] B. J. Daly. Numerical Study of Two Fluid Rayleigh‐Taylor Instability , 1967 .
[74] S. Zaleski,et al. DIRECT NUMERICAL SIMULATION OF FREE-SURFACE AND INTERFACIAL FLOW , 1999 .
[75] S. Osher,et al. Regular Article: A PDE-Based Fast Local Level Set Method , 1999 .
[76] S. Cummins,et al. Estimating curvature from volume fractions , 2005 .
[77] Heinz Pitsch,et al. A spectrally refined interface approach for simulating multiphase flows , 2009, J. Comput. Phys..
[78] P. Smereka,et al. A Remark on Computing Distance Functions , 2000 .
[79] T. Chan,et al. A Variational Level Set Approach to Multiphase Motion , 1996 .
[80] Wolfgang Schröder,et al. Differential equation based constrained reinitialization for level set methods , 2008, J. Comput. Phys..
[81] Olivier D. Faugeras,et al. Reconciling Distance Functions and Level Sets , 1999, Scale-Space.
[82] U. Ghia,et al. High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method , 1982 .
[83] David L. Chopp,et al. Another Look at Velocity Extensions in the Level Set Method , 2009, SIAM J. Sci. Comput..
[84] OlssonElin,et al. A conservative level set method for two phase flow , 2005 .
[85] P. Colella,et al. A second-order projection method for the incompressible navier-stokes equations , 1989 .
[86] Sergio Pirozzoli,et al. Conservative Hybrid Compact-WENO Schemes for Shock-Turbulence Interaction , 2002 .