Diabetes induces metabolic adaptations in rat liver mitochondria: role of coenzyme Q and cardiolipin contents.

[1]  M. S. Santos,et al.  Diabetes and mitochondrial bioenergetics: Alterations with age , 2003, Journal of biochemical and molecular toxicology.

[2]  P. Moreira,et al.  Increased vulnerability of brain mitochondria in diabetic (Goto-Kakizaki) rats with aging and amyloid-beta exposure. , 2003, Diabetes.

[3]  P. Oliveira Cardiac mitochondrial function : studies on the impact of disease conditions and on the protection afforded by carvedilol , 2003 .

[4]  M. Osbakken,et al.  Effect of coenzyme Q10 supplementation on mitochondrial function after myocardial ischemia reperfusion. , 2002, The Journal of surgical research.

[5]  C. Palmeira,et al.  Enhanced mitochondrial testicular antioxidant capacity in Goto-Kakizaki diabetic rats: role of coenzyme Q. , 2001, American journal of physiology. Cell physiology.

[6]  C. Palmeira,et al.  Brain and liver mitochondria isolated from diabeticGoto‐Kakizaki rats show different susceptibility to induced oxidative stress , 2001, Diabetes/metabolism research and reviews.

[7]  G. King,et al.  The role of oxidative stress in the onset and progression of diabetes and its complications: asummary of a Congress Series sponsored byUNESCO‐MCBN, the American Diabetes Association and the German Diabetes Society , 2001, Diabetes/metabolism research and reviews.

[8]  A E Vercesi,et al.  Mitochondrial permeability transition and oxidative stress , 2001, FEBS letters.

[9]  P. Oliveira,et al.  Inhibitory effect of carvedilol in the high-conductance state of the mitochondrial permeability transition pore. , 2001, European journal of pharmacology.

[10]  C. Berdanier Diabetes and nutrition: the mitochondrial part. , 2001, The Journal of nutrition.

[11]  P. Bernardi,et al.  A mitochondrial perspective on cell death. , 2001, Trends in biochemical sciences.

[12]  P. Oliveira,et al.  Decreased Susceptibility of Heart Mitochondria from Diabetic GK Rats to Mitochondrial Permeability Transition Induced by Calcium Phosphate , 2001, Bioscience reports.

[13]  X. Leverve,et al.  Three Classes of Ubiquinone Analogs Regulate the Mitochondrial Permeability Transition Pore through a Common Site* , 2000, The Journal of Biological Chemistry.

[14]  S. Toyokuni,et al.  Antioxidant α‐tocopherol ameliorates glycemic control of GK rats, a model of type 2 diabetes , 2000 .

[15]  H. Tritschler,et al.  Antioxidants in Diabetes Management , 2000 .

[16]  W. Cefalu Medical Management of Diabetes Mellitus , 2000 .

[17]  J. Lowe,et al.  Depletion of total antioxidant capacity in type 2 diabetes. , 1999, Metabolism: Clinical and Experimental.

[18]  M Crompton,et al.  The mitochondrial permeability transition pore and its role in cell death. , 1999, The Biochemical journal.

[19]  F. Ichas,et al.  A Ubiquinone-binding Site Regulates the Mitochondrial Permeability Transition Pore* , 1998, The Journal of Biological Chemistry.

[20]  G. Gores,et al.  Cholestasis confers resistance to the rat liver mitochondrial permeability transition. , 1998, Gastroenterology.

[21]  B. Portha,et al.  Impaired pancreatic beta cell function in the fetal GK rat. Impact of diabetic inheritance. , 1998, The Journal of clinical investigation.

[22]  F. Rainey,et al.  Meiothermus cerbereus sp. nov., a new slightly thermophilic species with high levels of 3-hydroxy fatty acids. , 1997, International journal of systematic bacteriology.

[23]  L. Scorrano,et al.  On the Voltage Dependence of the Mitochondrial Permeability Transition Pore , 1997, The Journal of Biological Chemistry.

[24]  A. Vercesi,et al.  The Role of Reactive Oxygen Species in Mitochondrial Permeability Transition , 1997, Bioscience reports.

[25]  R. Surwit,et al.  Animal Models Provide Insight into Psychosomatic Factors in Diabetes , 1996, Psychosomatic medicine.

[26]  M. Klingenberg,et al.  Mitochondrial ADP/ATP carrier can be reversibly converted into a large channel by Ca2+. , 1996, Biochemistry.

[27]  B. Kristal,et al.  Abnormalities in the mitochondrial permeability transition in diabetic rats. , 1996, Biochemical and biophysical research communications.

[28]  K. Gunter,et al.  Mitochondrial calcium transport: physiological and pathological relevance. , 1994, The American journal of physiology.

[29]  M. Ratinaud,et al.  Direct analysis and significance of cardiolipin transverse distribution in mitochondrial inner membranes. , 1994, European journal of biochemistry.

[30]  M. Ratinaud,et al.  10N-nonyl acridine orange interacts with cardiolipin and allows the quantification of this phospholipid in isolated mitochondria. , 1992, European journal of biochemistry.

[31]  D. Harris,et al.  Control of mitochondrial ATP synthesis in the heart. , 1991, The Biochemical journal.

[32]  J. Baynes Role of Oxidative Stress in Development of Complications in Diabetes , 1991, Diabetes.

[33]  J. Mccormack,et al.  Role of calcium ions in regulation of mammalian intramitochondrial metabolism. , 1990, Physiological reviews.

[34]  J. Mccormack,et al.  Characterization of the effects of Ca2+ on the intramitochondrial Ca2+-sensitive enzymes from rat liver and within intact rat liver mitochondria. , 1985, The Biochemical journal.

[35]  D. S. Beattie,et al.  The effect of diabetes on protein synthesis and the respiratory chain of rat skeletal muscle and kidney mitochondria. , 1982, Archives of biochemistry and biophysics.

[36]  N. Kamo,et al.  Membrane potential of mitochondria measured with an electrode sensitive to tetraphenyl phosphonium and relationship between proton electrochemical potential and phosphorylation potential in steady state , 1979, The Journal of Membrane Biology.

[37]  R. Denton,et al.  Regulation of adipose tissue pyruvate dehydrogenase by insulin and other hormones. , 1971, The Biochemical journal.

[38]  A. Gornall,et al.  Determination of serum proteins by means of the biuret reaction. , 1949, The Journal of biological chemistry.

[39]  P. Forsmark-Andrée,et al.  Ubiquinol: an endogenous antioxidant in aerobic organisms , 2004, The clinical investigator.

[40]  J. Watkins,et al.  Effects of coenzyme Q10 treatment on antioxidant pathways in normal and streptozotocin‐induced diabetic rats , 2001, Journal of biochemical and molecular toxicology.

[41]  G. Emilien,et al.  Pharmacological management of diabetes: recent progress and future perspective in daily drug treatment. , 1999, Pharmacology & therapeutics.

[42]  M. Sasaki,et al.  Development of diabetes in the non-obese NIDDM rat (GK rat). , 1988, Advances in experimental medicine and biology.

[43]  K. Katayama,et al.  Simultaneous determination of reduced and oxidized ubiquinones. , 1984, Methods in enzymology.

[44]  Y. Gotō,et al.  The Spontaneous-Diabetes Rat: A Model of Noninsulin Dependent Diabetes Mellitus , 1981 .

[45]  P. Gazzotti,et al.  Preparation and Assay of Animal Mitochondria and Submitochondrial Vesicles , 1979 .

[46]  Ernesto Carafoli,et al.  Membrane biochemistry : a laboratory manual on transport and bioenergetics , 1979 .

[47]  Y. Gotō,et al.  Spontaneous Diabetes Produced by Selective Breeding of Normal Wistar Rats , 1975 .