The blocking of an inhomogeneous Bingham fluid.Applications to landslides

This work is concerned with the flow of a viscous plastic fluid. We choose a model of Bingham type taking into account inhomogeneous yield limit of the fluid, which is well-adapted in the description of landslides. After setting the general threedimensional problem, the blocking property is introduced. We then focus on necessary and sufficient conditions such that blocking of the fluid occurs. The anti-plane flow in twodimensional and onedimensional cases is considered. A variational formulation in terms of stresses is deduced. More fine properties dealing with local stagnant regions as well as local regions where the fluid behaves like a rigid body are obtained in dimension one.

[1]  R. Temam,et al.  Problèmes mathématiques en plasticité , 1983 .

[2]  Roger Temam,et al.  Functions of bounded deformation , 1980 .

[3]  P. P. Mosolov,et al.  Variational methods in the theory of the fluidity of a viscous-plastic medium , 1965 .

[4]  J. Oldroyd A rational formulation of the equations of plastic flow for a Bingham solid , 1947, Mathematical Proceedings of the Cambridge Philosophical Society.

[5]  R. Glowinski Lectures on Numerical Methods for Non-Linear Variational Problems , 1981 .

[6]  R. Temam,et al.  Navier-Stokes equations: theory and numerical analysis: R. Teman North-Holland, Amsterdam and New York. 1977. 454 pp. US $45.00 , 1978 .

[7]  P. Hartman Ordinary Differential Equations , 1965 .

[8]  J. Lions,et al.  Les inéquations en mécanique et en physique , 1973 .

[9]  N. Cristescu On the optimum die angle in fast wire drawing , 1980 .

[10]  Roger Temam,et al.  On the theory and numerical analysis of the Navier-Stokes equations , 1973 .

[11]  R. Schwarzenberger ORDINARY DIFFERENTIAL EQUATIONS , 1982 .

[12]  A Model of Stability of Slopes , 2000 .

[13]  P. P. Mosolov,et al.  On stagnant flow regions of a viscous-plastic medium in pipes , 1966 .

[14]  The blocking property in the study of the Bingham fluid , 1986 .

[15]  R. Glowinski,et al.  Numerical Methods for Nonlinear Variational Problems , 1985 .

[16]  Mircea Sofonea,et al.  Functional and numerical methods in viscoplasticity , 1993 .

[17]  P. Lions Mathematical topics in fluid mechanics , 1996 .

[18]  F. Poupaud,et al.  An Existence Theorem for the Multifluid Navier-Stokes Problem , 1995 .

[19]  P. Lions,et al.  Ordinary differential equations, transport theory and Sobolev spaces , 1989 .

[20]  N. D. Cristescu,et al.  Plastic flow through conical converging dies, using a viscoplastic constitutive equation , 1975 .

[21]  P. P. Mosolov,et al.  On qualitative singularities of the flow of a viscoplastic medium in pipes , 1967 .

[22]  E. C. Bingham Fluidity And Plasticity , 1922 .

[23]  Pierre M. Suquet,et al.  Un espace fonctionnel pour les équations de la plasticité , 1979 .

[24]  N. Cristescu,et al.  A model for slow motion of natural slopes , 2002 .