Directed Evolution of Substrate-Optimized GroEL/S Chaperonins

[1]  Koreaki Ito,et al.  Isolation and physical mapping of temperature-sensitive mutants defective in heat-shock induction of proteins in Escherichia coli , 2004, Molecular and General Genetics MGG.

[2]  A. Khodursky,et al.  Escherichia coli spotted double-strand DNA microarrays: RNA extraction, labeling, hybridization, quality control, and data management. , 2003, Methods in molecular biology.

[3]  A. Horovitz,et al.  Mapping pathways of allosteric communication in GroEL by analysis of correlated mutations , 2002, Proteins.

[4]  F. Hartl,et al.  Molecular Chaperones in the Cytosol: from Nascent Chain to Folded Protein , 2002, Science.

[5]  H. Ulrich Natural substrates of the proteasome and their recognition by the ubiquitin system. , 2002, Current topics in microbiology and immunology.

[6]  B. Gowen,et al.  ATP-Bound States of GroEL Captured by Cryo-Electron Microscopy , 2001, Cell.

[7]  G. Blobel,et al.  Karyopherins and nuclear import. , 2001, Current opinion in structural biology.

[8]  F. Arnold,et al.  Directed enzyme evolution. , 2001, Current opinion in biotechnology.

[9]  D. J. Naylor,et al.  Dual Function of Protein Confinement in Chaperonin-Assisted Protein Folding , 2001, Cell.

[10]  G. Farr,et al.  GroEL/GroES-Mediated Folding of a Protein Too Large to Be Encapsulated , 2001, Cell.

[11]  John F. Hunt,et al.  Protein solubility and folding monitored in vivo by structural complementation of a genetic marker protein , 2001, Nature Biotechnology.

[12]  M. Leroux Protein folding and molecular chaperones in archaea. , 2001, Advances in applied microbiology.

[13]  J. Weissman,et al.  The action of molecular chaperones in the early secretory pathway. , 2001, Annual review of genetics.

[14]  K. Willison,et al.  Defining the eukaryotic cytosolic chaperonin-binding sites in human tubulins. , 2000, Journal of molecular biology.

[15]  F. Hartl,et al.  Protein folding: Versatility of the cytosolic chaperonin TRiC/CCT , 2000, Current Biology.

[16]  K. Furtak,et al.  Multivalent Binding of Nonnative Substrate Proteins by the Chaperonin GroEL , 2000, Cell.

[17]  A. Horovitz,et al.  Coupling between protein folding and allostery in the GroE chaperonin system. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[18]  C. Georgopoulos,et al.  Genetic analysis of bacteriophage-encoded cochaperonins. , 2000, Annual review of genetics.

[19]  Julie Grantham,et al.  Eukaryotic type II chaperonin CCT interacts with actin through specific subunits , 1999, Nature.

[20]  Dmitrij Frishman,et al.  Identification of in vivo substrates of the chaperonin GroEL , 1999, Nature.

[21]  W. Baumeister,et al.  Group II chaperonins: new TRiC(k)s and turns of a protein folding machine. , 1999, Journal of molecular biology.

[22]  J. Glasner,et al.  Genome-wide expression profiling in Escherichia coli K-12. , 1999, Nucleic acids research.

[23]  R. Tsien,et al.  Circular permutation and receptor insertion within green fluorescent proteins. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[24]  R. Glockshuber,et al.  Circularly permuted variants of the green fluorescent protein , 1999, FEBS letters.

[25]  B. Bukau,et al.  Trigger factor and DnaK cooperate in folding of newly synthesized proteins , 1999, Nature.

[26]  S. Radford,et al.  GroEL accelerates the refolding of hen lysozyme without changing its folding mechanism , 1999, Nature Structural Biology.

[27]  F. Hartl,et al.  Polypeptide Flux through Bacterial Hsp70 DnaK Cooperates with Trigger Factor in Chaperoning Nascent Chains , 1999, Cell.

[28]  Helen R. Saibil,et al.  GroEL-GroES Cycling ATP and Nonnative Polypeptide Direct Alternation of Folding-Active Rings , 1999, Cell.

[29]  J. Weissman,et al.  GroEL-GroES-mediated protein folding requires an intact central cavity. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[30]  R. Tsien,et al.  green fluorescent protein , 2020, Catalysis from A to Z.

[31]  N. McLennan,et al.  GroE is vital for cell-wall synthesis , 1998, Nature.

[32]  Bernd Bukau,et al.  The Hsp70 and Hsp60 Chaperone Machines , 1998, Cell.

[33]  A. Horwich,et al.  Structure and function in GroEL-mediated protein folding. , 1998, Annual review of biochemistry.

[34]  R. Mellado,et al.  Streptomyces lividans groES, groEL1 and groEL2 genes. , 1997, Microbiology.

[35]  A. Horwich,et al.  The crystal structure of the asymmetric GroEL–GroES–(ADP)7 chaperonin complex , 1997, Nature.

[36]  G. Homuth,et al.  The GroE chaperonin machine is a major modulator of the CIRCE heat shock regulon of Bacillus subtilis , 1997 .

[37]  J. Deisenhofer,et al.  Structural Adaptations in the Specialized Bacteriophage T4 Co-Chaperonin Gp31 Expand the Size of the Anfinsen Cage , 1997, Cell.

[38]  J. Buchner,et al.  Catalysis of protein folding by symmetric chaperone complexes. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[39]  K. Willison,et al.  Tissue‐specific subunit of the mouse cytosolic chaperonin‐containing TCP‐1 1 , 1997, FEBS letters.

[40]  E. Craig,et al.  Functional Specificity Among Hsp70 Molecular Chaperones , 1997, Science.

[41]  W. Stemmer,et al.  Improved Green Fluorescent Protein by Molecular Evolution Using DNA Shuffling , 1996, Nature Biotechnology.

[42]  K A Dill,et al.  A simple model of chaperonin‐mediated protein folding , 1996, Proteins.

[43]  J. Weissman,et al.  Characterization of the Active Intermediate of a GroEL–GroES-Mediated Protein Folding Reaction , 1996, Cell.

[44]  F. Hartl,et al.  Protein folding in the central cavity of the GroEL–GroES chaperonin complex , 1996, Nature.

[45]  P. Bouloc,et al.  Regulation of the heat‐shock response depends on divalent metal ions in an hfIB mutant of Escherichia coli , 1995, Molecular microbiology.

[46]  M. Chalfie GREEN FLUORESCENT PROTEIN , 1995, Photochemistry and photobiology.

[47]  W. Stemmer DNA shuffling by random fragmentation and reassembly: in vitro recombination for molecular evolution. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[48]  Zbyszek Otwinowski,et al.  The crystal structure of the bacterial chaperonln GroEL at 2.8 Å , 1994, Nature.

[49]  K Gulukota,et al.  Statistical mechanics of kinetic proofreading in protein folding in vivo. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[50]  Yechezkel Kashi,et al.  GroEL-mediated protein folding proceeds by multiple rounds of binding and release of nonnative forms , 1994, Cell.

[51]  G. Lorimer,et al.  Dynamics of the chaperonin ATPase cycle: implications for facilitated protein folding. , 1994, Science.

[52]  H. Mori,et al.  Effects of reduced levels of GroE chaperones on protein metabolism: enhanced synthesis of heat shock proteins during steady-state growth of Escherichia coli , 1994, Journal of bacteriology.

[53]  P. Høj,et al.  Generation of a stable folding intermediate which can be rescued by the chaperonins GroEL and GroES , 1994, FEBS letters.

[54]  K. Furtak,et al.  Folding in vivo of bacterial cytoplasmic proteins: Role of GroEL , 1993, Cell.

[55]  H. Hennecke,et al.  One member of a gro‐ESL‐like chaperonin multigene family in Bradyrhizobium japonicum is co‐regulated with symbiotic nitrogen fixation genes. , 1993, The EMBO journal.

[56]  P. Horowitz,et al.  The folding and stability of rhodanese are influenced by the replacement of glutamic acid 17 in the NH2-terminal helix by proline but not by glutamine. , 1993, The Journal of biological chemistry.

[57]  F. Baneyx,et al.  GroEL-Mediated Protein Folding , 1993 .

[58]  Michael B. Yaffe,et al.  TCP1 complex is a molecular chaperone in tubulin biogenesis , 1992, Nature.

[59]  John O. Thomas,et al.  A cytoplasmic chaperonin that catalyzes β-actin folding , 1992, Cell.

[60]  Jeffrey H. Miller,et al.  A short course in bacterial genetics , 1992 .

[61]  K. Sharp,et al.  Protein folding and association: Insights from the interfacial and thermodynamic properties of hydrocarbons , 1991, Proteins.

[62]  A. Baykov,et al.  A malachite green colorimetric assay for protein phosphatase activity. , 1991, Analytical biochemistry.

[63]  G. Lorimer,et al.  GroE heat-shock proteins promote assembly of foreign prokaryotic ribulose bisphosphate carboxylase oligomers in Escherichia coli , 1989, Nature.

[64]  J. Szulmajster Protein folding , 1988, Bioscience reports.