Corrections to “Singularity-Free Dynamic Equations of Open-Chain Mechanisms With General Holonomic and Nonholonomic Joints”

This is a correction to [Duindam and Stramigioli, “Singularity-free dynamic equations of open-chain mechanisms with general holonomic and nonholonomic joints,” IEEE Trans. Robot., vol. 24, no. 3, pp. 527-526, Jun. 2008] where the singularity-free dynamic equations of mechanical systems with Euclidean or non-Euclidean configuration spaces are presented. We present the correct explicit expressions of the equations presented in the above referenced paper.

[1]  J. Gibbs On the Fundamental Formulae of Dynamics , 1879 .

[2]  T. Kane,et al.  ON THE DERIVATION OF EQUATIONS OF MOTION , 1965 .

[3]  Roy Featherstone,et al.  Robot Dynamics Algorithms , 1987 .

[4]  Edmund Taylor Whittaker,et al.  A Treatise on the Analytical Dynamics of Particles and Rigid Bodies: THE GENERAL THEORY OF ORBITS , 1988 .

[5]  A. Schaft,et al.  Port-controlled Hamiltonian systems : modelling origins and systemtheoretic properties , 1992 .

[6]  M. Lesser A geometrical interpretation of Kane’s Equations , 1992, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[7]  van der Arjan Schaft,et al.  On the Hamiltonian Formulation of Nonholonomic Mechanical Systems , 1994 .

[8]  J. Marsden,et al.  Introduction to mechanics and symmetry , 1994 .

[9]  Richard M. Murray,et al.  A Mathematical Introduction to Robotic Manipulation , 1994 .

[10]  Frank Chongwoo Park,et al.  A Lie Group Formulation of Robot Dynamics , 1995, Int. J. Robotics Res..

[11]  A. D. Lewis The geometry of the Gibbs-Appell equations and Gauss' principle of least constraint , 1996 .

[12]  P. Krishnaprasad,et al.  Nonholonomic mechanical systems with symmetry , 1996 .

[13]  J. M. Selig Geometric Fundamentals of Robotics , 2004, Monographs in Computer Science.

[14]  Wayne J. Book,et al.  Modeling Mechanisms with Nonholonomic Joints Using the Boltzmann-Hamel Equations , 1997, Int. J. Robotics Res..

[15]  H. Munthe-Kaas Runge-Kutta methods on Lie groups , 1998 .

[16]  Amir Fijany,et al.  A technique for analyzing constrained rigid-body systems, and its application to the constraint force algorithm , 1999, IEEE Trans. Robotics Autom..

[17]  W. Blajer A geometrical interpretation and uniform matrix formulation of multibody system dynamics , 2001 .

[18]  Stefano Stramigioli,et al.  Modeling and IPC Control of Interactive Mechanical Systems - A Coordinate-Free Approach , 2001 .

[19]  J. G. Papastavridis Analytical Mechanics: A Comprehensive Treatise on the Dynamics of Constrained Systems , 2014 .

[20]  P. Maisser,et al.  A Lie-Group Formulation of Kinematics and Dynamics of Constrained MBS and Its Application to Analytical Mechanics , 2003 .

[21]  Hilding Elmqvist,et al.  The New Modelica MultiBody Library , 2003 .

[22]  F. Aghili,et al.  Simulation of Motion of Constrained Multibody Systems Based on Projection Operator , 2003 .

[23]  A. D. Lewis,et al.  Geometric Control of Mechanical Systems , 2004, IEEE Transactions on Automatic Control.

[24]  Jonghoon Park Principle of Dynamical Balance for Multibody Systems , 2005 .

[25]  G. Quispel,et al.  Geometric integrators for ODEs , 2006 .

[26]  S. Welch,et al.  Parameter-Free Second Order Numerical Scheme for Constrained Multibody Dynamical Systems , 2007 .