Minimum bias multiple taper spectral estimation

Two families of orthonormal tapers are proposed for multitaper spectral analysis: minimum bias tapers, and sinusoidal tapers {/spl upsisup (k/)}, where /spl upsisub nsup (k/)=/spl radic/(2/(N+1))sin(/spl pi/kn/N+1), and N is the number of points. The resulting sinusoidal multitaper spectral estimate is S/spl circ/(f)=(1/2K(N+1))/spl Sigmasub j=1sup K/|y(f+j/(2N+2))-y(f-j/(2N+2))|/sup 2/, where y(f) is the Fourier transform of the stationary time series, S(f) is the spectral density, and K is the number of tapers. For fixed j, the sinusoidal tapers converge to the minimum bias tapers like 1/N. Since the sinusoidal tapers have analytic expressions, no numerical eigenvalue decomposition is necessary. Both the minimum bias and sinusoidal tapers have no additional parameter for the spectral bandwidth. The bandwidth of the jth taper is simply 1/N centered about the frequencies (/spl plusmn/j)/(2N+2). Thus, the bandwidth of the multitaper spectral estimate can be adjusted locally by simply adding or deleting tapers. The band limited spectral concentration, /spl intsub -wsup w/|V(f)|/sup 2/df of both the minimum bias and sinusoidal tapers is very close to the optimal concentration achieved by the Slepian (1978) tapers. In contrast, the Slepian tapers can have the local bias, /spl intsub - 1/2 sup 1/2 /f/sup 2/|V(f)|/sup 2/df, much larger than of the minimum bias tapers and the sinusoidal tapers. >

[1]  David J. Thomson,et al.  Spectral estimation of plasma fluctuations. I. Comparison of methods , 1994, 1804.00003.

[2]  Athanasios Papoulis,et al.  Minimum-bias windows for high-resolution spectral estimates , 1973, IEEE Trans. Inf. Theory.

[3]  D. Thomson Quadratic-inverse spectrum estimates: applications to palaeoclimatology , 1990, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[4]  Kurt S. Riedel,et al.  Function estimation using data-adaptive kernel smoothers—how much smoothing? , 1994 .

[5]  H. Müller,et al.  Variable Bandwidth Kernel Estimators of Regression Curves , 1987 .

[6]  D. Slepian Prolate spheroidal wave functions, fourier analysis, and uncertainty — V: the discrete case , 1978, The Bell System Technical Journal.

[7]  Kurt S. Riedel,et al.  Optimal data-based kernel estimation of evolutionary spectra , 1993, IEEE Trans. Signal Process..

[8]  E. Parzen On Asymptotically Efficient Consistent Estimates of the Spectral Density Function of a Stationary Time Series , 1958 .

[9]  U. Grenander,et al.  Statistical analysis of stationary time series , 1957 .

[10]  Frank L. Vernon,et al.  Multitaper spectral analysis of high-frequency seismograms , 1987 .

[11]  D. Thomson,et al.  Spectrum estimation and harmonic analysis , 1982, Proceedings of the IEEE.

[12]  I. Olkin,et al.  Inequalities: Theory of Majorization and Its Applications , 1980 .

[13]  S. V. Fomin,et al.  Reelle Funktionen und Funktionalanalysis , 1975 .

[14]  T. Gasser,et al.  Locally Adaptive Bandwidth Choice for Kernel Regression Estimators , 1993 .

[15]  A. Walden,et al.  Spectral analysis for physical applications : multitaper and conventional univariate techniques , 1996 .

[16]  M.G. Amin Spectral decomposition of time-frequency distribution kernels , 1994, IEEE Trans. Signal Process..